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The classic Turan problem ‘O ‘

Question

What is the largest possible size of an undirected graph with order n
and no triangles?
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The classic Turan problem O
—

Question

What is the largest possible size of an undirected graph with order n
and no triangles?

Theorem, Mantel, 1907

The largest size of a triangle-free graph with order n is L’;—ZJ and for
order n the extremal graphs are complete bipartite graphs K x| ru7.

Turan generalised this result as follows:

Theorem, Turan,1941

A K, -free graph with order n has at most (1 — 1)% edges.
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A Turan problem for cycles O

K3 is both a complete graph and a cycle. Erdés posed the following
Turén-type problem.

Question

What is the maximum size of a graph with order n and no cycles of
length < r?

Erdds conjectured that for » = 4 the answer is (§ + o(l))%n%. If we
denote the extremal size by f(n), then it is only known that

1
—— < lim inff(:l) < lim supf(,z) < -.
2\/5 n—oo  p3 n—oco  p2 2

Finding exact values for given n and r is a difficult open problem.
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K3 is both a complete graph and a cycle. Erdés posed the following
Turén-type problem.

Question

What is the maximum size of a graph with order n and no cycles of
length < r?

Erdds conjectured that for » = 4 the answer is (§ + o(1))2n2. If we
denote the extremal size by f(n), then it is only known that

1
—— < lim inff(zl) < lim supf(lz) < -.
2\/§ n—oo  p3 n—oco  p2 2

Finding exact values for given n and r is a difficult open problem.

What can we say about directed graphs?



Exc@ng cycles in digraphs O

Question
What is the largest size of a strongly connected digraph with girth > g?J

We must include the restriction of strong connectivity as the acyclic
tournament with order n has (3) arcs but no cycles.

| can orient the edges in such a way that |
get a digraph of order n, with n(n — 1)/2
arcs, and no directed cycles at all.



Solution for cycles O

=~

This question was completely solved by Bermond et al (see ‘Girth in
digraphs’).

Theorem
Let D be a strong digraph of order n, size m and girth g. Letk > 2. Then

1
m> 5(nz+(3—2k)n+k2—k)

implies that ¢ < k. This expression is best possible.




Solution for cycles O

- -
This question was completely solved by Bermond et al (see ‘Girth in
digraphs’).

Theorem
Let D be a strong digraph of order n, size m and girth g. Letk > 2. Then

1
mzi(n2+(3—2k)n+k2—k)

implies that ¢ < k. This expression is best possible.

This means that, asymptotically speaking, a strong digraph can have
large girth and ‘almost all’ possible arcs present!



What is a k-geodetic digraph? O
= 4

Definition
A digraph is k-geodetic if there do not exist vertices u, v with two
distinct directed paths of length < k between them.
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What is a k-geodetic digraph? )

Definition
A digraph is k-geodetic if there do not exist vertices u, v with two
distinct directed paths of length < k between them.

This digraph is not 2-geodetic.

This digraph is not 3-geodetic.



Why are such digraphs interesting? O
-
The degree/geodecity problem asks for the smallest possible order
of a k-geodetic digraph with minimum out-degree d. It is known that the
order n of such a digraph is bounded below by the directed Moore
bound
n>Mdk)=1+d+d +-- +d"

The degree/geodecity problem is a generalisation of the undirected
degree/girth problem. The first cages were identified by Tuite and
Erskine.

The geodetic girth of a digraph G is the largest k such that G is
k-geodetic. As an undirected graph has girth > 2k + 1 if and only if it is
k-geodetic (with suitable changes made to the definition) the geodetic
girth of a digraph can be viewed as a ‘girth-like’ parameter.



An example of a cage

Figure: A smallest possible 3-geodetic digraph with out-degree 2



Problem statement O
—

Definition
For k > 2 let ex(n; k) be the largest possible size of a k-geodetic digraph
with order n.




Problem statement O

Definition
For k > 2 let ex(n; k) be the largest possible size of a k-geodetic digraph
with order n.

We can easily obtain a lower bound for ex(n; k) by taking the complete
bipartite graph K17 2| and orienting all arcs towards the same partite

%
set.




Lower bound

Lemma
For k > 2 we have ex(n; k) > [2]|4]




Lower bound O

Lemma
For k > 2 we have ex(n; k) > [2]|4]

Note: For k = 2 and even n we can make this solution strongly
connected by orienting a perfect matching in the opposite direction.




Counting Lemma

Lemma

For any m < n — 1 we have ex(n; k) <

n(n—1)

m(m—1)

ex(m; k).

1




Counting Lemma @

Lemma

For any m < n — 1 we have ex(n; k) < 2&::1)) ex(m; k).

Proof

We count the pairs (F, ¢), where F is a subset of m vertices and e is an
arc with both end-points in F. Let F be any subset of m vertices. In the
induced subdigraph there can be at most ex(m; k) arcs. Therefore there
are at most () ex(m; k) such pairs. For each arc e there are exactly

(~3) subsets containing the endpoints of e, so it follows that

m—2
ex(n; 2) (:1:22) < (Z)ex(m;k).

Rearranging yields the result.




Theorem )
- —
Theorem

Foralln > 4,n >k > 2 we have ex(n; k) = [5][5].

Let k = 2. The theorem is easily shown to be true forn =4. Letn > 5
and assume that the theorem is true for n — 1. Suppose that n = 2r is
even. Putting m = n — 1 in the counting lemma and using the induction
hypothesis we have

2r(2r — 1
ex(2r;2) < r(2r—1)

S -ner—y V= a

as required.

Now let n = 2r + 1. The counting lemma with m = 2r gives
2r(2r+1) ,  2r+1)r? )
2 1;2) < = 1
ex(2r+1; )_2r(2r—1)r 2r—1 <rtr+d

so again the necessary inequality follows.




Classification of solutions )

Let n = 2r. Let H be the underlying graph of an extremal digraph G.

If a vertex x has degree < r, then G — x would have too many arcs. If
any vertex has degree > r then the size of G would be too large.
Therefore H is r-regular.

Either H is bipartite or contains a triangle. Suppose that x, y, z form a
triangle. H is diamond-free, so their neighbours outside the triangle are
distinct. As H is r-regular it follows that 3(r — 2) 4+ 3 < 2r, so that r < 3.

Hence H = K, ,.
Likewise forn =2r + 1 H =2 K, ;1.

In fact all solutions are obtained by orienting a matching in one
direction and all other arcs in the other direction.



What if we require strong connectivity? ‘O ‘
= 4

Definition
For k > 2 and n > k let ex*(n; k) be the largest size of a strongly
connected k-geodetic digraph with order x.




What if we require strong connectivity? O
-

Definition
For k > 2 and n > k let ex*(n; k) be the largest size of a strongly
connected k-geodetic digraph with order x.

We know from the orientations of complete bipartite graphs that
ex*(2r;2) = r2.

However, it is easy to see that no strongly connected 2-geodetic
digraphs with order n = 2r + 1 and ex(2r + 1;2) = r* + r arcs exist!



A construction )

It is easy to find a construction that yields ex*(2r + 1;2) > r* + 2.

Figure: A strongly connected digraph with n = 2r+ 1 and m = r*> + 2 (for r = 4)

In fact this is best possible!



Proof sketch )

Theorem
ex*(2r;2) = r* and ex*(2r + 1;2) = r* 4 2,

Ouitline of proof for n = 2r + 1:

Let the size of an extremal digraph Gbem = r> +r—efor0 < e < r—3.
Let H be the underlying graph of G. The maximum degree of H is

A >r.

For e < r—3 G is bipartite.

A counting argument shows that:

e > max{|N*?(x)|, IN72(x)[} (min{d* (x),d~ (x)} - 1)

Use this to show that there are vertices x in G with out-degree

d*(x) = r—1, in-degree d~(x) = 1 and each out-neighbour has
out-degree one. Derive a contradiction for e < r — 3.



Classification for k = 2 )

-

This analysis allows us to classify all strong 2-geodetic digraphs with
order n = 2r + 1 and size m = r> + 2. Examples of these digraphs are
shown on the following slides.

Theorem

If G is a 2-geodetic digraph with order n = 2r + 1, size m = r* + 2 and
no sources or sinks, then G is either isomorphic to one of

Ay, B,0,B,,—1,C, or D, or is isomorphic to a member of the family

B, B, for some 1 <t < r — 2. The digraphs in this list are mutually
non-isomorphic and so there are 2r + 1 distinct solutions up to
isomorphism.




Strong digraphs withn =2r + 1, m = r> + 2 O
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Strong digraphs withn =2r + 1, m = r> + 2

This digraph is a member of a family of  — 1 solutions.
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Figure: Bs »
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Strong digraphs with n
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Figure: Cq
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Figure: Dg



What about larger k7? O

-

Take the orientation of the complete bipartite graph X, with a perfect
matching oriented in one direction and all other arcs in the opposite
direction. Expand the arc in the perfect matching into paths of length
k — 1. This yields a strongly connected k-geodetic digraph Gy , with
order kr, r > 2.

This gives the following lower bound:

Lemma

(k—2)n

For r > 2 we have ex*(kr; k) > ’,%; 4+ =







More generally... O

Let the quotient and remainder when n is divided by k be r and s
respectively, i.e. n = kr + 5. We assume that s < r.

Form the digraph G(n, k) as follows. The vertex set of G(n, k) consists
of vertices u;; for 1 <i<rand 1 <j <k, as well as s further vertices
Vi,V2,...Vs.

We define the adjacencies of G(n, k) as follows.
i)uiJ—>uiJ+1for1gigrandlgjgk—l

ii)ui7k—>v,-for1§i§s

i) uix »ujpfors+1<i<rand1<j<s

V) uig = up g fors+1<i i/ <randi#i



More generally... O
- -
This digraph is k-geodetic and has size

m=rs+k—-1Dr+s+r—s)r—1)=r"+ (k—2)r+2s.

Ifr+1<s<k—1,thenwe have | 7| <k — 2, which is equivalent to
n < k> — k — 1. Therefore these digraphs will certainly exist for

n > k? — k. The arcs in part iii) can also be directed to u;»; combined
with taking the converse of the resulting digraphs, this generates
several isomorphism classes.

Let’s see an example.



Figure: G(33,6)



Conjecture O
-

This construction generalises the digraphs Gy .. Computer search

confirms that these digraphs are extremal for any n and & in the range

k=3and7 <n <14,

k=4and 9 <n <15,

k=5and 11 <n <17 and

k=6and 13 <n <19

for which the construction is defined.
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This construction generalises the digraphs Gy .. Computer search
confirms that these digraphs are extremal for any n and & in the range
k=3and7 <n <14,

k=4and 9 <n <15,

k=5and 11 <n <17 and

k=6and 13<n <19

for which the construction is defined. Moreover, for any n, k in this
range such that n = kr not only is the digraph G; , extremal, it is the
unique solution (subject to taking the converse etc)! This leads us to
the following conjecture:

Conjecture
lfn>k+1andn < (k+ 1)[%] (in particular for n > k* — k),

ex*(n; k) = Ln

22— (k+2)L%J +2n.




Thank you!
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