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The classic Turán problem

Question
What is the largest possible size of an undirected graph with order n
and no triangles?

Theorem, Mantel, 1907

The largest size of a triangle-free graph with order n is b n2

4 c and for
order n the extremal graphs are complete bipartite graphs Kb n

2 c,d
n
2 e.

Turán generalised this result as follows:

Theorem, Turán,1941

A Kr+1-free graph with order n has at most (1− 1
r )n2

2 edges.
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A Turán problem for cycles

K3 is both a complete graph and a cycle. Erdős posed the following
Turán-type problem.

Question
What is the maximum size of a graph with order n and no cycles of
length ≤ r?

Erdős conjectured that for r = 4 the answer is (1
2 + o(1))

3
2 n

3
2 . If we

denote the extremal size by f (n), then it is only known that

1
2
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≤ 1
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.

Finding exact values for given n and r is a difficult open problem.

What can we say about directed graphs?
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Erdős conjectured that for r = 4 the answer is (1
2 + o(1))

3
2 n

3
2 . If we

denote the extremal size by f (n), then it is only known that

1
2
√

2
≤ lim inf

n→∞

f (n)

n
3
2

≤ lim sup
n→∞

f (n)

n
3
2

≤ 1
2
.

Finding exact values for given n and r is a difficult open problem.

What can we say about directed graphs?



Excluding cycles in digraphs

Question
What is the largest size of a strongly connected digraph with girth ≥ g?

We must include the restriction of strong connectivity as the acyclic
tournament with order n has

(n
2

)
arcs but no cycles.

I can orient the edges in such a way that I
get a digraph of order n, with n(n− 1)/2
arcs, and no directed cycles at all.



Solution for cycles

This question was completely solved by Bermond et al (see ‘Girth in
digraphs’).

Theorem
Let D be a strong digraph of order n, size m and girth g. Let k ≥ 2. Then

m ≥ 1
2

(n2 + (3− 2k)n + k2 − k)

implies that g ≤ k. This expression is best possible.

This means that, asymptotically speaking, a strong digraph can have
large girth and ‘almost all’ possible arcs present!
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What is a k-geodetic digraph?

Definition
A digraph is k-geodetic if there do not exist vertices u, v with two
distinct directed paths of length ≤ k between them.

This digraph is not 2-geodetic.

u w

vx

This digraph is not 3-geodetic.

u w

v
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Why are such digraphs interesting?

The degree/geodecity problem asks for the smallest possible order
of a k-geodetic digraph with minimum out-degree d. It is known that the
order n of such a digraph is bounded below by the directed Moore
bound

n ≥ M(d, k) = 1 + d + d2 + · · ·+ dk.

The degree/geodecity problem is a generalisation of the undirected
degree/girth problem. The first cages were identified by Tuite and
Erskine.

The geodetic girth of a digraph G is the largest k such that G is
k-geodetic. As an undirected graph has girth ≥ 2k + 1 if and only if it is
k-geodetic (with suitable changes made to the definition) the geodetic
girth of a digraph can be viewed as a ‘girth-like’ parameter.



An example of a cage

Figure: A smallest possible 3-geodetic digraph with out-degree 2



Problem statement

Definition
For k ≥ 2 let ex(n; k) be the largest possible size of a k-geodetic digraph
with order n.

We can easily obtain a lower bound for ex(n; k) by taking the complete
bipartite graph Kd n

2 e,b
n
2 c and orienting all arcs towards the same partite

set.
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Lower bound

Lemma
For k ≥ 2 we have ex(n; k) ≥ dn

2eb
n
2c

Note: For k = 2 and even n we can make this solution strongly
connected by orienting a perfect matching in the opposite direction.
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Counting Lemma

Lemma

For any m ≤ n− 1 we have ex(n; k) ≤ n(n−1)
m(m−1)ex(m; k).

Proof
We count the pairs (F, e), where F is a subset of m vertices and e is an
arc with both end-points in F. Let F be any subset of m vertices. In the
induced subdigraph there can be at most ex(m; k) arcs. Therefore there
are at most

(n
m

)
ex(m; k) such pairs. For each arc e there are exactly(n−2

m−2

)
subsets containing the endpoints of e, so it follows that

ex(n; 2)

(
n− 2
m− 2

)
≤

(
n
m

)
ex(m; k).

Rearranging yields the result.
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Theorem

Theorem
For all n ≥ 4, n ≥ k ≥ 2 we have ex(n; k) = d n

2eb
n
2c.

Let k = 2. The theorem is easily shown to be true for n = 4. Let n ≥ 5
and assume that the theorem is true for n− 1. Suppose that n = 2r is
even. Putting m = n− 1 in the counting lemma and using the induction
hypothesis we have

ex(2r; 2) ≤ 2r(2r − 1)

(2r − 1)(2r − 2)
r(r − 1) = r2

as required.

Now let n = 2r + 1. The counting lemma with m = 2r gives

ex(2r + 1; 2) ≤ 2r(2r + 1)

2r(2r − 1)
r2 =

(2r + 1)r2

2r − 1
< r2 + r + 1,

so again the necessary inequality follows.



Classification of solutions

Let n = 2r. Let H be the underlying graph of an extremal digraph G.

If a vertex x has degree < r, then G− x would have too many arcs. If
any vertex has degree > r then the size of G would be too large.
Therefore H is r-regular.

Either H is bipartite or contains a triangle. Suppose that x, y, z form a
triangle. H is diamond-free, so their neighbours outside the triangle are
distinct. As H is r-regular it follows that 3(r − 2) + 3 ≤ 2r, so that r ≤ 3.

Hence H ∼= Kr,r.
Likewise for n = 2r + 1 H ∼= Kr,r+1.

In fact all solutions are obtained by orienting a matching in one
direction and all other arcs in the other direction.



What if we require strong connectivity?

Definition
For k ≥ 2 and n ≥ k let ex∗(n; k) be the largest size of a strongly
connected k-geodetic digraph with order n.

We know from the orientations of complete bipartite graphs that
ex∗(2r; 2) = r2.

However, it is easy to see that no strongly connected 2-geodetic
digraphs with order n = 2r + 1 and ex(2r + 1; 2) = r2 + r arcs exist!
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A construction

It is easy to find a construction that yields ex∗(2r + 1; 2) ≥ r2 + 2.

Figure: A strongly connected digraph with n = 2r + 1 and m = r2 + 2 (for r = 4)

In fact this is best possible!



Proof sketch

Theorem
ex∗(2r; 2) = r2 and ex∗(2r + 1; 2) = r2 + 2.

Outline of proof for n = 2r + 1:

Let the size of an extremal digraph G be m = r2 + r− ε for 0 ≤ ε ≤ r− 3.
Let H be the underlying graph of G. The maximum degree of H is
∆ ≥ r.
For ε ≤ r − 3 G is bipartite.
A counting argument shows that:
ε ≥ max{|N+2(x)|, |N−2(x)|}(min{d+(x), d−(x)} − 1)
Use this to show that there are vertices x in G with out-degree
d+(x) = r − 1, in-degree d−(x) = 1 and each out-neighbour has
out-degree one. Derive a contradiction for ε ≤ r − 3.



Classification for k = 2

This analysis allows us to classify all strong 2-geodetic digraphs with
order n = 2r + 1 and size m = r2 + 2. Examples of these digraphs are
shown on the following slides.

Theorem
If G is a 2-geodetic digraph with order n = 2r + 1, size m = r2 + 2 and
no sources or sinks, then G is either isomorphic to one of
Ar,Br,0,Br,r−1,Cr or Dr or is isomorphic to a member of the family
Br,t,B′r,t for some 1 ≤ t ≤ r − 2. The digraphs in this list are mutually
non-isomorphic and so there are 2r + 1 distinct solutions up to
isomorphism.



Strong digraphs with n = 2r + 1, m = r2 + 2

x

z

y

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure: A6



Strong digraphs with n = 2r + 1, m = r2 + 2

This digraph is a member of a family of t − 1 solutions.

x

y z

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure: B6,2



Strong digraphs with n = 2r + 1, m = r2 + 2

y

x

z

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure: C6



Strong digraphs with n = 2r + 1, m = r2 + 2

y

x

z

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure: D6



What about larger k?

Take the orientation of the complete bipartite graph Kr,r with a perfect
matching oriented in one direction and all other arcs in the opposite
direction. Expand the arc in the perfect matching into paths of length
k − 1. This yields a strongly connected k-geodetic digraph Gk,r with
order kr, r ≥ 2.

This gives the following lower bound:

Lemma

For r ≥ 2 we have ex∗(kr; k) ≥ n2

k2 + (k−2)n
k .



Example

Figure: Gk,r for k = 6, r = 4



More generally...

Let the quotient and remainder when n is divided by k be r and s
respectively, i.e. n = kr + s. We assume that s ≤ r.

Form the digraph G(n, k) as follows. The vertex set of G(n, k) consists
of vertices ui,j for 1 ≤ i ≤ r and 1 ≤ j ≤ k, as well as s further vertices
v1, v2, . . . vs.

We define the adjacencies of G(n, k) as follows.

i) ui,j → ui,j+1 for 1 ≤ i ≤ r and 1 ≤ j ≤ k − 1

ii) ui,k → vi for 1 ≤ i ≤ s

iii) ui,k → uj,2 for s + 1 ≤ i ≤ r and 1 ≤ j ≤ s

iv) ui,k → ui′,1 for s + 1 ≤ i, i′ ≤ r and i 6= i′

v) vt → ui,1 for 1 ≤ t ≤ s and all i in the range 1 ≤ i ≤ r.



More generally...

This digraph is k-geodetic and has size

m = rs + (k − 1)r + s + (r − s)(r − 1) = r2 + (k − 2)r + 2s.

If r + 1 ≤ s ≤ k − 1, then we have b n
k c ≤ k − 2, which is equivalent to

n ≤ k2 − k − 1. Therefore these digraphs will certainly exist for
n ≥ k2 − k. The arcs in part iii) can also be directed to uj,2; combined
with taking the converse of the resulting digraphs, this generates
several isomorphism classes.

Let’s see an example.



Example

u56 u55 u54 u53 u52 u51

u46 u45 u44 u43 u42 u41

u36 u35 u34 u33 u32 u31

u26 u25 u24 u23 u22 u21

u16 u15 u14 u13 u12 u11 v1

v2

v3

Figure: G(33, 6)



Conjecture

This construction generalises the digraphs Gk,r. Computer search
confirms that these digraphs are extremal for any n and k in the range
k = 3 and 7 ≤ n ≤ 14,
k = 4 and 9 ≤ n ≤ 15,
k = 5 and 11 ≤ n ≤ 17 and
k = 6 and 13 ≤ n ≤ 19

for which the construction is defined.

Moreover, for any n, k in this
range such that n = kr not only is the digraph Gk,r extremal, it is the
unique solution (subject to taking the converse etc)! This leads us to
the following conjecture:

Conjecture
If n ≥ k + 1 and n ≤ (k + 1)b n

k c (in particular for n ≥ k2 − k),

ex∗(n; k) = bn
k
c2 − (k + 2)bn

k
c+ 2n.
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Thank you!
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