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Chromatic index of the complete graph

Fact

If n is odd, then χ′(Kn) = n.
If n is even, then χ′(Kn) = n − 1, and the colour classes of an optimal
edge-colouring form a ‘1-factorization’ of Kn; that is, a decomposition into
perfect matchings.
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Rainbow Hamilton paths

Definition: Rainbow

A subgraph H of an edge-coloured graph is called rainbow if all edges of H
have distinct colours.

Question

Whenever we properly colour the edges of Kn, is there always a rainbow
Hamilton path?
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Rainbow Hamilton paths

Question

Whenever we properly colour the edges of Kn, is there always a rainbow
Hamilton path?

Answer

No. Maamoun and Meyniel (1984) proved the existence of a
1-factorization of Kn (for n ≥ 4 being any power of 2) with no rainbow
Hamilton path.
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Andersen’s Conjecture

Andersen’s Conjecture (1989)

Every properly edge-coloured Kn has a rainbow path of length n − 2.

What’s known:
Trivial: There is a rainbow path of length n/2− 1.

Gyárfás-Mhalla (‘10): Every 1-factorization of Kn has a rainbow path of
length 2n/3 + 1.

Gyárfás-Ruszinkó-Sárközy-Schelp (‘11): Every properly edge-coloured
Kn has a rainbow path of length (4/7− o(1))n.

Gebauer-Mousset (‘12) & Chen-Li (‘15): ... (3/4− o(1))n.

Alon-Pokrovskiy-Sudakov (‘17): ... n − O(n3/4).

Balogh-Molla (‘17): ... n − O(log n
√
n).
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Main results

Ferber-Jain-Sudakov (‘20): Do ‘almost all’ 1-factorizations of Kn have a
rainbow Hamilton path? We prove: Yes.

Theorem (G., Kelly, Kühn, Osthus, 2020++)

As n→∞, the proportion of 1-factorizations of Kn that have a rainbow
Hamilton path tends to one.

I.e., Andersen’s Conjecture holds in a strong sense for almost all
1-factorizations.
Equivalently, almost all 1-factorizations of Kn have a Hamilton cycle
using all colours – confirms strong version of a conjecture of Akbari,
Etesami, Mahini, and Mahmoody for almost all 1-factorizations.

Theorems (G., Kelly, Kühn, Osthus, 2020++)

Almost all 1-factorizations have a rainbow cycle using all the colours.

For n odd, almost all optimal edge-colourings have a rainbow
Hamilton cycle.
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Latin squares and transversals

Latin square: An n × n array of n symbols such that each row and each
column contains one instance of each symbol.

Latin squares correspond to 1-factorizations of Kn,n. (Identify the
vertex classes with rows and columns, and colours with symbols.)

Transversal: A collection of n cells, one from each row and column,
containing one instance of each symbol.

Transversals correspond to rainbow perfect matchings.

1

2

3

3

1

2

2

3

1

Ryser-Brualdi-Stein conj: Every LS has a partial transversal of size n− 1.
Kwan (2016+): Almost all Latin squares have a full transversal – ‘partite
analogue’ of our result.
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Symmetric Latin squares and Hamilton transversals

Symmetric Latin square: A Latin square whose entries are symmetric
across the leading diagonal; that is, aij = aji for all i , j , where aij denotes
the symbol in cell (i .j).

Suppose n is odd. Symmetric n × n Latin squares correspond to
optimal edge-colourings of G = Kn + a loop at each vertex. (Put
V (G ) = {1, 2, . . . , n} and colour edge ij with a colour corresponding
to the symbol aij .)

Transversals correspond to rainbow 2-factors (including loops).

3 1 4 2 5

1 4 2 5 3

4 2 5 3 1

2 5 3 1 4

5 3 1 4 2

Corollary (GKKO): For n odd, almost all symmetric n × n Latin squares
have a ‘Hamilton transversal’. (The 2-factor is a Hamilton cycle.)
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The big picture

Latin square Proper edge-colouring of Kn

Ryser-Brualdi-Stein: Always an
order n − 1 “partial” transversal?

Andersen: Always a rainbow
path of length n − 2?

Best result in arbitrary Latin
squares: Keevash-Pokrosvkiy-

Sudakov-Yepremyan:
n − O(log n/ log log n)

Best result in arbitrary proper
edge-colourings of Kn:

Balogh-Molla: n − O(log n
√
n)

Kwan: Almost all Latin squares
have transversal

G-K-K-O: Almost all
1-factorizations have rainbow

Hamilton path
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Proof strategy

Theorem (G., Kelly, Kühn, Osthus, 2020++)

A uniformly random 1-factorization of Kn has a rainbow Hamilton path
with high probability.

The proof splits neatly into two halves. Suppose n is even.

Probabilistic analysis: Show that almost all 1-factorizations φ of Kn

have some property, say Property (?).

Construct the RHP: Show that any 1-factorization of Kn which has
Property (?) admits a rainbow Hamilton path.
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Proof strategy: Probabilistic Analysis

Property (?)

‘φ has Property (?)’ ⇔ φ has many well-spread special ‘absorbing’
subgraphs.

v
1

3

2

3

1

2

c
4

5

6

7

Each absorbing subgraph can ‘absorb’ a pair (v , c), where v is a vertex
and c is a colour.

The key property of absorbing subgraphs is that they have a path
which uses all vertices and colours...

... and a path using all vertices except v , and all colours except c .
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Proof strategy: Probabilistic Analysis

Aim

Almost all 1-factorizations of Kn have Property (?).

Key challenge of the proof: Uniformly random choice of a
1-factorization φ of Kn is a ‘rigid’ probability space. There are many
dependencies and correlations between events, and it is difficult to make
local changes to φ without far-reaching, difficult-to-analyze effects.

Ideally, one would directly analyze a uniformly random 1-factorization
of Kn.

Instead, we analyze a slightly different probability space that is less
‘rigid’. (Delete all but a few colour classes.)

...and use known results to compare the two probability spaces.
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Proof strategy: Constructing the RHP

Aim

1-factorization φ of Kn has Property (?) =⇒ φ contains a rainbow
Hamilton path.

Fix a 1-factorization φ of Kn which has Property (?).

1 Randomly partition the vertices, colours, and edges into a large ‘main’
slice, and a small ‘absorbing’ slice.

2 Find a rainbow path using almost all of the main slice, by using
results following from the ‘Rödl Nibble’.

3 Finally, use Property (?) to show that the absorbing slice contains the
absorbing subgraphs required to absorb the remaining vertices and
colours into an RHP.
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Gould, Kelly, Kühn, Osthus Rainbow Hamilton path 14-18 September 2020 13 / 14



Proof strategy: Constructing the RHP

Aim

1-factorization φ of Kn has Property (?) =⇒ φ contains a rainbow
Hamilton path.

Fix a 1-factorization φ of Kn which has Property (?).

1 Randomly partition the vertices, colours, and edges into a large ‘main’
slice, and a small ‘absorbing’ slice.

2 Find a rainbow path using almost all of the main slice, by using
results following from the ‘Rödl Nibble’.
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The paper

Paper Title
Almost all optimally coloured complete graphs contain a

rainbow Hamilton path

Find the paper online at
https://arxiv.org/abs/2007.00395

Thank you for reading!
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