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Definition of Hypergraphs

Definition
A hypergraph H is defined by a vertex set V (H) and an edge set
E (H), where E (H) C 2V(H) {_ {0}. In the sequel, we consider
only hypergraphs H such that

E(H) C 2™« ({0} U {{v} : v € V (H)}).
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Definition of Hypergraphs

Definition
A hypergraph H is defined by a vertex set V (H) and an edge set
E (H), where E (H) C 2V(H) {_ {0}. In the sequel, we consider
only hypergraphs H such that

E(H) C 2™« ({0} U {{v} : v € V (H)}).

@ The complete hypergraph H is given by
H= (V(H) ,2"(”)) P
Tt

e A hypergraph H is empty, if E (H) = 0. /
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Definition of Hypergraphs

k-Uniform hypergraph
Given k > 2, a hypergraph H is k-uniform if

E(H) C ( Vﬁ”’)

@ If k = 2, an 2-uniform hypergraph is a graph.
=
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Definition of Hypergraphs

k-Uniform hypergraph

Given k > 2, a hypergraph H is k-uniform if

E(H) C ( Vﬁ”’)

@ If k = 2, an 2-uniform hypergraph is a graph.
e If k = 3, an 3-uniform hypergraph is a hypergraph whose 77

)
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edges are triangles. »

Mohamed Zaidi About 3-uniform hypergraphs



Introduction. Definition of Hypergraph
Modules for hypergraphs
Modular partition for hypergraphs

Subhypergraphs

Subhypergraph

We say that a hypergraph H’ is a sub-hypergraph of H, if V(H") C
V(H) and E(H’) C E(H).
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Subhypergraphs

Subhypergraph

We say that a hypergraph H’ is a sub-hypergraph of H, if V(H") C
V(H) and E(H’) C E(H).

Induced subhypergraph

Let H be a hypergraph. With each W C V (H), we associate
the subhypergraph H [W] of H induced by W, which is defined on
V (H[W]) = W by

i

(57

E(H[W]) = {e € E(H): e C W}

W
2

E y H i!,;
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Realization by tournaments

A tournament is an oriented complete graph. The 3-cycle is the
tournament {{0, 1,2}, {01,12,20}}. Let T be a tournament, we
denote by C3(T) the set of all 3-cycle of T.

Then (V(T), C3(T)) is an 3-uniform hypergraph. It is said to be
The Cs-structure of T.

illl suclldaals
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Realization by tournaments

Tournaments

A tournament is an oriented complete graph. The 3-cycle is the
tournament {{0, 1,2}, {01,12,20}}. Let T be a tournament, we
denote by C3(T) the set of all 3-cycle of T.

Then (V(T), C3(T)) is an 3-uniform hypergraph. It is said to be
The Cs-structure of T.

Definition

| \

Given a 3-uniforme hypergraph H, a tournament T, with V(T) =
V(H), realizes H if H = C3(T). We say also that T is a realization | %
of H. w

illl suclldaals
UNIVERSITE HASSAN
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Example of a realizable hypergraph

Example of realizable hypergraph

L A
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The distribution of 3-cycles in a tournament

Necessary condition

The 3-uniform hypergraphs
(V(T), CG3(T)) satisfy the follow-
ing property:

P: Each subset of V(H) with 4 ver-
tices contains 0, 1 or 2 hyper-edges.

=
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Counter-example

There exist hypergraphs that satisfying the property P but they are
not realisable.
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Motivation introduction.

© Introduction

@ Modules for hypergraphs
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Notion of module for tournaments

Definition

Given a tournament T = (V, A), a subset X of V is an interval of
T provided that for every a,b € X and x € V ~ X, (a,x) € Aif
and only if (b, x) € A.
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Notion of module for tournaments

Definition

Given a tournament T = (V, A), a subset X of V is an interval of
T provided that for every a,b € X and x € V ~ X, (a,x) € Aif
and only if (b, x) € A.

For example, 0, {{x} : x € V} and V are intervals of T, called
trivial intervals. A tournament all the intervals of which are trivial is
called indecomposable, otherwise, it is decomposable.
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Notion of module for tournaments

The 3-cycles of a tournament T are distributed with respect to
intervals as follows.

Property

Given a tournament T = (V, A), let M be an interval of T, and e
be a 3-cycle of T, then we have one of the following three cases:

QenM=0or;
Q@ eC Mor;
Q@ enM#D0.
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Notion of module for tournaments

More precisely

O forevery x,y € M and z ¢ M, then {x, y, z} is not a 3-cycle;

Q forevery x,y € M and z,z' € M, then {x,y, z} is 3-cycle if
and only if {x,y, z'} is also 3-cycle.

=
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Notion of module for hypergraphs

New definition

Let H be a hypergraph. A subset M of V/(H) is a module of H if
for each e € E(H) such that e N M # () and e ~. M # (), there
exists m € M such that e M = {m} and

Vn € M, (e~ {m}) U {n} € E(H).

‘f" Dl i
g
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Notion of module for hypergraphs

New definition

Let H be a hypergraph. A subset M of V/(H) is a module of H if
for each e € E(H) such that e N M # () and e ~. M # (), there
exists m € M such that e M = {m} and

Vn € M, (e~ {m}) U {n} € E(H).

Classical definition

Let H be a hypergraph. A subset M of V(H) is a module of H if
for any e, f C V(H) such that |e| = |f|, e~ M = f ~ M, and
enN M # (), we have

)

e € E(H) <= f € E(H).

Mohamed Zaidi About 3-uniform hypergraphs



Introduction. Definition of Hypergraph
Modules for hypergraphs
Modular partition for hypergraphs

Motivation of choice between two defintions

RENEILS

The classical defintion and our definition coincide for 2-uniform
hypergraphs, that is, for graphs. They do not in the general case.
Given a hypergraph H, a module of H in the sense of Definition
1 is a module of the sense of Definition 2. the converse is not
true. Given n > 3, consider the 3-uniform hypergraph H defined by
V(H)={0,...,n—1} and E(H) ={01p:2< p<n-—1}.
In the sense of Definition 2, {0,1} is a module of H wheras it is
not a module of H in the sense of Definition 1
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Our definition vs the classical definition

The set {2, 3,4} is a module in | The set {0,1} is a module in
the sense of our definition the sense of the usual definition

2 3 4 5 3 1 =
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Partitve family

We study the set of modules of hypergraphs.

Given a hypergraph H, the set of modules of H is denoted by M (H).
For instance, if H is an empty hypergrpah, then M (H) = PR
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Partitve family

We study the set of modules of hypergraphs.

Given a hypergraph H, the set of modules of H is denoted by M (H).
For instance, if H is an empty hypergrpah, then M (H) = Ak

Definition
Let S be set. A family F of subsets of S is a partitve family on S
if it satisfies the following assertions.

Q0eF SeF andforevery x € S, {x} € F.

Q@ Forany M, Ne F, MN N € F. ;:
© For any M, N € F such that MooN , then MU N € F and »a'wj
(M~ N)U (N~ M) € F. ‘%
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Modular covering

Proposition

Given a hypergraph H, M (H) is a partitve family.

b=
=
(aN
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Modular covering

Proposition

Given a hypergraph H, M (H) is a partitve family.

By the previous Proposition, @, V(H) and {v} where v € V(H),
are modules of H, called trivial.

it is decomposable. An hypergraph H is prime if and only if it is
indecomposable with v(H) > 3.

A hypergraph is indecomposable if all its modules are trivial, otherwiseJ
o
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Motivation introduction.

© Introduction

@ Modular partition for hypergraphs
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Theorem 1

The purpose of this section is to demonstrate the folllowing result.

Given a hypergraph H with v(H) > 2, H/N(H) is an empty hyper-
graph, a prime hypergraph or a complete graph (i.e. E(H/M(H)) =

(7]
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Definition

Let H be a hypergraph. A partition P of V(H) is a modular partition
of Hif P C M(H).
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Definition
Let H be a hypergraph. A partition P of V(H) is a modular partition
of Hif P C M(H).

Definition

Given a modular partion P of H, the quotient H/P of H by P is
defined on V(H/P) = P as follows. For € C P, € € E(H/P)
if |€] > 2, and there exists e € E(H) such that € = {X € P :
XNe#0}.

=y
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Hypergraphs and decomposability

Remark

Consider a modular partition P of a hypergraph H. Let e € E(H)
such that |e/P| > 2. Given X € e/P, we have e N X # 0, and
e~ X # 0 because |e/P| > 2. Since X is a module of H, we
obtain |e N X| = 1. Therefore, e is a transverse of e/ P. Moreover,
since each element of e/P is a module of H, we obtain that each
transverse of e/P is an edge of H. Given £ C P such that |€| > 2,
it follows that £ € E(H/P) if and only if every transverse of & is
an edge of H.

v SRl i
[ 4
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Hypergraphs and decomposability

Remark

Consider a modular partition P of a hypergraph H. Let e € E(H)
such that |e/P| > 2. Given X € e/P, we have e N X # 0, and
e~ X # 0 because |e/P| > 2. Since X is a module of H, we
obtain |e N X| = 1. Therefore, e is a transverse of e/ P. Moreover,
since each element of e/P is a module of H, we obtain that each
transverse of e/P is an edge of H. Given £ C P such that |€| > 2,
it follows that £ € E(H/P) if and only if every transverse of & is
an edge of H.

Lastly, consider a transverse t of P. The function 8; from t to P,
which maps each x € t to the unique element of P containing x, is | &
an isomorphism from H[t] onto H/P.
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Modular partition

We introduce the following strengthening of the notion of a module.

Strong module

Let H be a hypergraph. A module M of H is strong if for every
module N of H, we have if MN N # (), then M C N ou N C M.
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Modular partition

We introduce the following strengthening of the notion of a module.

Strong module

Let H be a hypergraph. A module M of H is strong if for every
module N of H, we have if MN N # (), then M C N ou N C M.

We denote by M(H) the set of proper strong modules of H that are

maximal under inclusion. Clearly, M(H) is a modular partition when
v(H) > 2.

T |
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Modular partition

In the next propositions, we study the links between the modules of
a hypergraph with those of its quotients.

Given a modular partition P of a hypergraph H, the following two
assertions hold

1. if M is a module of H, then M /P is a module of H/P;

2. if M is a module of H/P, then UM is a module of H.
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Modular partition

Given a modular partition P of a hypergraph H, the following two
assertions hold.

1. If M is a strong module of H, then M/P is a strong module
of H/P.

2. Suppose that all the elements of P are strong modules of H. If
M is a strong module of H/P, then UM is a strong module
of H.
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Connected Hypergraphs

Definition

A hypergraph H is connected if for distinct v,w € V/(H), there exist
a sequence (e, ...,e,) of edges of H, where n > 0, satisfying
v € e, w € e, and (when n > 1) e N ejy1 # O for every
0 < i < n—1 Given a hypergraph H, a maximal connected
subhypergraph of H is called a component of H.
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Connected Hypergraphs

Definition

A hypergraph H is connected if for distinct v,w € V/(H), there exist
a sequence (e, ...,e,) of edges of H, where n > 0, satisfying
v € e, w € e, and (when n > 1) e N ejy1 # O for every
0 < i < n—1 Given a hypergraph H, a maximal connected
subhypergraph of H is called a component of H.

Given a hypergraph H, the set of the components of H is denoted | =
by €(H).
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Connected Hypergraphs

Remark

Let H be a hypergraph. For each component C of H, V(C) is a
module of H. Thus, {V(C) : C € €(H)} is a modular partition
of H. Furthermore, for each component C of H, V(C) is a strong
module of H.

| N

Lemma
Given a hypergraph H with v(H) > 2, the following assertions are
equivalent :

1. H is disconnected;

T SED i
ig®
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Connected Hypergraphs

Remark

Let H be a hypergraph. For each component C of H, V(C) is a
module of H. Thus, {V(C) : C € €(H)} is a modular partition
of H. Furthermore, for each component C of H, V(C) is a strong
module of H.

Lemma
Given a hypergraph H with v(H) > 2, the following assertions are
equivalent :

1. H is disconnected;
2. H admits a modular bipartition P such that H/P is empty;

ol
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Connected Hypergraphs

Remark

Let H be a hypergraph. For each component C of H, V(C) is a
module of H. Thus, {V(C) : C € €(H)} is a modular partition
of H. Furthermore, for each component C of H, V(C) is a strong
module of H.

Lemma
Given a hypergraph H with v(H) > 2, the following assertions are
equivalent :

1. H is disconnected;

2. H admits a modular bipartition P such that H/P is empty;

3. N(H) = {V(C) : C € €(H)},|N(H)| > 2, and H/N(H)
is empty.

Mohamed Zaidi About 3-uniform hypergraphs
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Proof of Theorem 1

Let H be a hypergraph such that v(H) > 2. Because of the
maximality of the elements of M(H), it follows from the second
assertion of the previous Proposition that all the strong modules of
H/M(H) are trivial. We establish the following result.
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Proof of Theorem 1

Let H be a hypergraph such that v(H) > 2. Because of the
maximality of the elements of M(H), it follows from the second
assertion of the previous Proposition that all the strong modules of
H/M(H) are trivial. We establish the following result.

Given a hypergraph H, all the strong modules of H are trivial if and
only if H is an empty hypergraph, a prime hypergraph or a complete
graph.
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Proof of Theorem 1

For a contradiction, suppose that H/M(H) admits a nontrivial
strong module S. US is a strong module of H. Given X € S, we
obtain X C US C V/(H), which contradicts the maximality of X.
Consequently, all the strong modules of H/IM(H) are trivial. To
conclude, it suffices to apply Theorem 2 to H/MN(H).
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Some useful notations

Let H be a hypergraph. As for tournaments, the set of the nonempty
strong modules of H is denoted by D(H). Clearly, D(H) ordered
by inclusion is a tree. It is called the modular decomposition tree
of H. For convenience, set D>2(H) = {X € D(H) : |X| > 2}.
Moreover, we associate with each X € D>3(H), the label EH(X)
defined as follows:

A if H[X]/N(H[X]) is prime,
en(X) = o if H[X]/N(H[X]) is empty ,
e if H[X]/M(H[X]) is a complete graph. 27
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Modular partition of hypergraphs

Proposition

Given a hypergraph H, consider a strong module M of H. For every
N C M, the following two assertions are equivalent:

1. N is a strong module of H;
2. N is a strong module of H[M].

B
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Motivation introduction.

@ Realization and decomposability
@ Realization and decomposability of hypergraphs
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Let H be a 3-uniform hypergraph. For W C V/(H) such that
W # 0, WH denotes the intersection of the strong modules of H
containing W. Note that W* is the smallest strong module of H

containing W.

bl paldncls
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Let H be a 3-uniform hypergraph. For W C V/(H) such that
W # 0, WH denotes the intersection of the strong modules of H
containing W. Note that W* is the smallest strong module of H
containing W.

Notation

Let T be a tournament. For a subset W of V(T), set 't W =
{v € V(T) ~ W is not a module of T[W U {v}]} Consider a
realizable and 3-uniform hypergraph. Let T be a realization of H.
A module of T is clearly a module of H, but the converse is false.]| ...

=
==

Nevertheless, we have the following result. Its proof is arduous and | 25§
somewhat long, but it is central to establish Theorem 3.
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Key Proposition

The key proposition in this study is the following.
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Key Proposition

The key proposition in this study is the following.

Key Proposition

Let H be a realizable and 3-uniform hypergraph. Consider a realiza-
tion T of H. Let M be a module of H. If M is not a module of T,

then the following four assertions hold.
Q@ MU ("rM) is a module of T;
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Key Proposition

The key proposition in this study is the following.

Key Proposition

Let H be a realizable and 3-uniform hypergraph. Consider a realiza-
tion T of H. Let M be a module of H. If M is not a module of T,

then the following four assertions hold.
Q@ MU ("rM) is a module of T;
@ M is not a strong module of H,
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Key Proposition

The key proposition in this study is the following.

Key Proposition

Let H be a realizable and 3-uniform hypergraph. Consider a realiza-
tion T of H. Let M be a module of H. If M is not a module of T,

then the following four assertions hold.
Q@ MU ("rM) is a module of T;
@ M is not a strong module of H,
@ MU ('rM) C M¥;
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Key Proposition

The key proposition in this study is the following.

Key Proposition

Let H be a realizable and 3-uniform hypergraph. Consider a realiza-
tion T of H. Let M be a module of H. If M is not a module of T,
then the following four assertions hold.

Q@ MU ("rM) is a module of T;

@ M is not a strong module of H,

@ MU ('rM) C M¥;

0 H(M") = o and ](H[’M”])] > 3.

—
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Key result

The next theorem is a key result. A realizable 3-uniform hypergraph
and its realizations do not have the same modules, they share the
same strong module.

Consider a realizable and 3-uniform hypergraph H. Given a realiza-
tion T of H, H and T share the same strong modules.
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We establish Theorem 4 by using Theorems 2 and 3.
Theorem 4

Consider a realizable 3-uniform hypergraph H. For a realization T
of H, we have H is prime if and only if T is prime.
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We establish Theorem 4 by using Theorems 2 and 3.

Theorem 4
Consider a realizable 3-uniform hypergraph H. For a realization T
of H, we have H is prime if and only if T is prime.

Proof of Theorem 4

Suppose that H is prime. Since all the modules of T are modules of
H, T is prime. Conversely, suppose that T is prime. Hence, all the
strong modules of T are trivial. By Theorem 3, all the strong modules
of H are trivial. We obtain M(H) = {{v} : v € V(H)} Thus, H
is isomorphic to H/M(H). It follows from Theorem 1 that H is an
empty hypergraph, a prime hypergraph or a complete graph. Since
T is prime, we have E(C3(T)) # 0. Since E(C3(T)) = E(H),
there exists e € E(H) such that |e| = 3. Therefore, H is not an
empty hypergraph, and H is not a graph.lt follows that H is prime.

Mohamed Zaidi About 3-uniform hypergraphs
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Thanks
Realizability of 3-uniform hypergraphs

Characterization of realizable 3-uniform hypergraphs

Now, we characterize the realizable 3-uniform hypergraphs. To begin,
we establish the following theorem by using the modular decompo-
sition tree. We prove that a 3-uniform hypergraph is realizable if
and only if all its prime, 3-uniform and induced subhypergraphs are
realizable.
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Realizability of 3-uniform hypergraphs

Characterization of realizable 3-uniform hypergraphs

Now, we characterize the realizable 3-uniform hypergraphs. To begin,
we establish the following theorem by using the modular decompo-
sition tree. We prove that a 3-uniform hypergraph is realizable if
and only if all its prime, 3-uniform and induced subhypergraphs are
realizable.

Theorem 5 (General case)

Given a 3-uniform hypergraph H, H is realizable if and only if for
every W C V/(H) such that H[W] is prime, H[W] is realizable.
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Critical case

Theorem 6 (Critical case)

Given a critical and 3-uniform hypergraph H, H is realizable if and
only if v(H) is odd, and H is isomorphic to C3(Ty(#)), C3(Uy(n))
or C3(W,,(H)).
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The next proposition is useful to construct realizations from the
modular decomposition tree. We need the following notation and
remark.
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Realizability of 3-uniform hypergraphs

The next proposition is useful to construct realizations from the
modular decomposition tree. We need the following notation and
remark.

Let H be a 3—uniform hypergraph. We denote by R(H) the set of
the realizations of H.
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Let H be a 3-uniform hypergraph. Consider T € R(H). It follows
from Theorem 11 that D(H) = D(T). For each X € D>>(H),
we have M(H[X]) = N(T[X]).

Therefore,

VX € D>2(H), T[X]/N(T[X]) € R(H[X]/N(H[X])).

Set,

Ro(H)= | R(HIX]/N(H[X])).
XED5,(H)
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We denote by dy(T) the function

Dzz(H) — RD(H)
Y —  T[Y]/N(T[Y])

Lastly, denote by ¢(H) the set of the functions f from D>2(H) to
Rp(H) satisfying VY € D>2(H), f(Y) € R(H[Y]/N(H[Y])).
Under this notation, we obtain the function

ou: R(H) — o(H)
T —  n(T) 7=

ki
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Proposition 2
For a 3-uniform hypergraph H, dy is a bijection.

Theorem (Critical case)

Given a critical and 3-uniform hypergraph H, H is realizable if and
only if v(H) is odd, and H is isomorphic to C3(Ty(n)), C3(Uy(n))
ou C3(WV(H))-
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Realizability of 3-uniform hypergraphs

Now, we characterize the non critical, prime and 3-uniform hyper-
graphs that are realizable. We need the following notation.
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Now, we characterize the non critical, prime and 3-uniform hyper-
graphs that are realizable. We need the following notation.

Notation

Let H be a 3-uniform hypergraph. Consider a vertex w of H. Set
V., = V(H) ~ {w}. We denote by G, the graph defined on V,,
as follows. Given distinct elements v and v’ of V,,, w’ € E(G,) if
ww’' € E(H). Also, we denote by I, the set of the isolated vertices
of G,,.
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Notation

Let T be a tournament. Consider W, W’ C V(T) such that
W N W = 0. We denote by (W — W’) 1 the subset of w’ € W’
such that there exists a sequence wy, . . . , w, satisfying
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Notation

Let T be a tournament. Consider W, W’ C V(T) such that
W N W = 0. We denote by (W — W’) 1 the subset of w’ € W’
such that there exists a sequence wy, . . . , w, satisfying

Ow(]EW,wn=w,.
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Notation

Let T be a tournament. Consider W, W’ C V(T) such that
W N W = 0. We denote by (W — W’) 1 the subset of w’ € W’
such that there exists a sequence wy, . . . , w, satisfying

Ow(]EW,wn=w,.

4
0 Wi,...,wy, € W7
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Notation

Let T be a tournament. Consider W, W’ C V(T) such that
W N W = 0. We denote by (W — W’) 1 the subset of w’ € W’
such that there exists a sequence wy, . . . , w, satisfying

o wp EW, w, =uw;

° wi,...,wn € W

o fori=0,...,n—1, wjwijt1 € A(T).
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Theorem (Prime, non critical case)

Let H be a non critical, prime, and 3-uniform hypergraph. Consider a
vertex w of H such that H — w is prime. The 3-uniform hypergraph
H is realizable if and only if H — w admits a realization, say T,
satisfying the following two assertions:
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Theorem (Prime, non critical case)

Let H be a non critical, prime, and 3-uniform hypergraph. Consider a
vertex w of H such that H — w is prime. The 3-uniform hypergraph
H is realizable if and only if H — w admits a realization, say T,
satisfying the following two assertions:

(M1) There exists a bipartition {X, Y} of W, \ I, satisfying

(i) for each component C of G,,, with v(C) > 2, C is bipartite
with bipartition {X N V(C); Y N V(C)};

(ii)) Vx € X,y € Y, we have xy € E(G,) <= xy € A(T,).

=

ki
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Theorem (Prime, non critical case)

Let H be a non critical, prime, and 3-uniform hypergraph. Consider a
vertex w of H such that H — w is prime. The 3-uniform hypergraph

H is realizable if and only if H — w admits a realization, say T,
satisfying the following two assertions:

(M1) There exists a bipartition {X, Y} of W, \ I, satisfying

(i) for each component C of G,,, with v(C) > 2, C is bipartite
with bipartition {X N V(C); Y N V(C)};

(ii)) Vx € X,y € Y, we have xy € E(G,) <= xy € A(T,).
(M2) (X = L)z, 1Y = L) = 0 (X = ), U (Y =

I, )(T o = l,. Furthermore, forx € X,y € Y, xt 6 (X — L, )Tw k >
and y~ € (Y = L) ;.. we have y~ x, yxt;y~xT € A(T,). m
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(X — ’w)Tu (Y — Iw)(Tw)"
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(X — ’w)Tu (Y — Iw)(Tw)"
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(X — ’w)Tu (Y — Iw)(Tw)"
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L
é (X — ’w)Tu (Y - Iw)(Tw)" i
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Realizability of 3-uniform hypergraphs

We conclude by counting the number of realizations of a realizable
and 3-uniform hypergraph. We need the following notation.

-

[l )
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We conclude by counting the number of realizations of a realizable
and 3-uniform hypergraph. We need the following notation.

Let H be a 3-uniform hypergraph. Set

DA(H) = {X € DZZ(H) : EH(X) = A}
and

Do(H) = {X € D32(H) : en(X) = o}

[l )
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Realizability of 3-uniform hypergraphs

We conclude by counting the number of realizations of a realizable
and 3-uniform hypergraph. We need the following notation.

Let H be a 3-uniform hypergraph. Set
DA(H) = {X € ’Dzz(H) : EH(X) = A}
and
Do(H) = {X € D32(H) : en(X) = o}

For a realizable and 3-uniform hypergraph, we have

IR(H)| = 2/P2M) T In(HX])!
XeDo(H)
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