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Definition of Hypergraphs

Definition
A hypergraph H is defined by a vertex set V (H) and an edge set
E (H), where E (H) ⊆ 2V (H) r {∅}. In the sequel, we consider
only hypergraphs H such that

E (H) ⊆ 2V (H) r ({∅} ∪ {{v} : v ∈ V (H)}).

The complete hypergraph H is given by
H =

(
V (H) , 2V (H)

)
A hypergraph H is empty, if E (H) = ∅.
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Definition of Hypergraphs

k-Uniform hypergraph
Given k ≥ 2, a hypergraph H is k-uniform if

E (H) ⊆
(

V (H)
k

)
.

If k = 2, an 2-uniform hypergraph is a graph.
If k = 3, an 3-uniform hypergraph is a hypergraph whose
edges are triangles.
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Subhypergraphs

Subhypergraph
We say that a hypergraph H′ is a sub-hypergraph of H, if V (H ′) ⊆
V (H) and E(H′) ⊆ E(H).

Induced subhypergraph
Let H be a hypergraph. With each W ⊆ V (H), we associate
the subhypergraph H [W ] of H induced by W , which is defined on
V (H [W ]) = W by

E (H [W ]) = {e ∈ E(H) : e ⊆ W}

.
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Realization by tournaments

Tournaments
A tournament is an oriented complete graph. The 3-cycle is the
tournament {{0, 1, 2}, {01, 12, 20}}. Let T be a tournament, we
denote by C3(T) the set of all 3-cycle of T .
Then (V (T),C3(T)) is an 3-uniform hypergraph. It is said to be
The C3-structure of T .

Definition
Given a 3-uniforme hypergraph H, a tournament T , with V (T) =
V (H), realizes H if H = C3(T). We say also that T is a realization
of H.
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The distribution of 3-cycles in a tournament

0

1

2 3

4

Necessary condition
The 3-uniform hypergraphs
(V (T),C3(T)) satisfy the follow-
ing property:
P : Each subset of V (H) with 4 ver-
tices contains 0, 1 or 2 hyper-edges.
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Counter-example

Remark
There exist hypergraphs that satisfying the property P but they are
not realisable.
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Notion of module for tournaments

Definition
Given a tournament T = (V ,A), a subset X of V is an interval of
T provided that for every a, b ∈ X and x ∈ V r X, (a, x) ∈ A if
and only if (b, x) ∈ A.

For example, ∅, {{x} : x ∈ V} and V are intervals of T , called
trivial intervals. A tournament all the intervals of which are trivial is
called indecomposable, otherwise, it is decomposable.
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Notion of module for tournaments

The 3-cycles of a tournament T are distributed with respect to
intervals as follows.
Property
Given a tournament T = (V ,A), let M be an interval of T , and e
be a 3-cycle of T , then we have one of the following three cases:

1 e ∩M = ∅ or ;
2 e ⊆ M or ;
3 e ∩M 6= ∅.
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Notion of module for tournaments

More precisely

1 for every x, y ∈ M and z /∈ M, then {x, y, z} is not a 3-cycle;
2 for every x, y /∈ M and z, z ′ ∈ M, then {x, y, z} is 3-cycle if

and only if {x, y, z ′} is also 3-cycle.
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Notion of module for hypergraphs

New definition
Let H be a hypergraph. A subset M of V (H) is a module of H if
for each e ∈ E(H) such that e ∩M 6= ∅ and e r M 6= ∅, there
exists m ∈ M such that e ∩M = {m} and

∀n ∈ M, (e r {m}) ∪ {n} ∈ E(H).

Classical definition
Let H be a hypergraph. A subset M of V (H) is a module of H if
for any e, f ⊆ V (H) such that |e| = |f |, e r M = f r M, and
e ∩M 6= ∅, we have

e ∈ E(H) ⇐⇒ f ∈ E(H).
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Motivation of choice between two defintions

Remark
The classical defintion and our definition coincide for 2-uniform
hypergraphs, that is, for graphs. They do not in the general case.
Given a hypergraph H, a module of H in the sense of Definition
1 is a module of the sense of Definition 2. the converse is not
true. Given n ≥ 3, consider the 3-uniform hypergraph H defined by
V (H) = {0, . . . , n − 1} and E(H) = {01p : 2 ≤ p ≤ n − 1}.
In the sense of Definition 2, {0, 1} is a module of H wheras it is
not a module of H in the sense of Definition 1
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Our definition vs the classical definition

The set {2, 3, 4} is a module in
the sense of our definition

0 1

2 3 4

The set {0, 1} is a module in
the sense of the usual definition

0 1

2 3 4
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Partitve family

We study the set of modules of hypergraphs.

Notation
Given a hypergraph H, the set of modules of H is denoted byM (H).
For instance, if H is an empty hypergrpah, thenM (H) = 2V (H).

Definition
Let S be set. A family F of subsets of S is a partitve family on S
if it satisfies the following assertions.

1 ∅ ∈ F , S ∈ F , and for every x ∈ S, {x} ∈ F .
2 For any M, N ∈ F , M ∩ N ∈ F .
3 For any M, N ∈ F such that M∞N , then M ∪ N ∈ F and

(M r N) ∪ (N r M) ∈ F .
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Modular covering

Proposition
Given a hypergraph H,M (H) is a partitve family.

By the previous Proposition, ∅, V (H) and {v} where v ∈ V (H),
are modules of H, called trivial.

A hypergraph is indecomposable if all its modules are trivial, otherwise
it is decomposable. An hypergraph H is prime if and only if it is
indecomposable with v(H) ≥ 3.
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Theorem 1

The purpose of this section is to demonstrate the folllowing result.

Theorem 1
Given a hypergraph H with v(H) ≥ 2, H/Π(H) is an empty hyper-
graph, a prime hypergraph or a complete graph (i.e. E(H/Π(H)) =(

Π(H)
2

)
.
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Definition
Let H be a hypergraph. A partition P of V (H) is a modular partition
of H if P ⊆M(H).

Definition
Given a modular partion P of H, the quotient H/P of H by P is
defined on V (H/P) = P as follows. For E ⊆ P, E ∈ E(H/P)
if |E| ≥ 2, and there exists e ∈ E(H) such that E = {X ∈ P :
X ∩ e 6= ∅}.
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Hypergraphs and decomposability

Remark
Consider a modular partition P of a hypergraph H. Let e ∈ E(H)
such that |e/P| ≥ 2. Given X ∈ e/P, we have e ∩ X 6= ∅, and
e r X 6= ∅ because |e/P| ≥ 2. Since X is a module of H, we
obtain |e ∩ X| = 1. Therefore, e is a transverse of e/P. Moreover,
since each element of e/P is a module of H, we obtain that each
transverse of e/P is an edge of H. Given E ⊆ P such that |E| ≥ 2,
it follows that E ∈ E(H/P) if and only if every transverse of E is
an edge of H.

Remark
Lastly, consider a transverse t of P. The function θt from t to P,
which maps each x ∈ t to the unique element of P containing x, is
an isomorphism from H[t] onto H/P.
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Modular partition

We introduce the following strengthening of the notion of a module.

Strong module
Let H be a hypergraph. A module M of H is strong if for every
module N of H, we have if M ∩N 6= ∅, then M ⊆ N ou N ⊆ M.

Notation
We denote by Π(H) the set of proper strong modules of H that are
maximal under inclusion. Clearly, Π(H) is a modular partition when
v(H) ≥ 2.
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Modular partition

In the next propositions, we study the links between the modules of
a hypergraph with those of its quotients.

Proposition
Given a modular partition P of a hypergraph H, the following two
assertions hold

1. if M is a module of H, then M/P is a module of H/P;

2. ifM is a module of H/P, then ∪M is a module of H.
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Modular partition

Proposition
Given a modular partition P of a hypergraph H, the following two
assertions hold.

1. If M is a strong module of H, then M/P is a strong module
of H/P.

2. Suppose that all the elements of P are strong modules of H. If
M is a strong module of H/P, then ∪M is a strong module
of H.
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Connected Hypergraphs

Definition
A hypergraph H is connected if for distinct v, ω ∈ V (H), there exist
a sequence (e0, . . . , en) of edges of H, where n ≥ 0, satisfying
v ∈ e0, ω ∈ en, and (when n ≥ 1) ei ∩ ei+1 6= ∅ for every
0 ≤ i ≤ n − 1. Given a hypergraph H, a maximal connected
subhypergraph of H is called a component of H.

Notation
Given a hypergraph H, the set of the components of H is denoted
by C(H).
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Connected Hypergraphs

Remark
Let H be a hypergraph. For each component C of H, V (C) is a
module of H. Thus, {V (C) : C ∈ C(H)} is a modular partition
of H. Furthermore, for each component C of H, V (C) is a strong
module of H.

Lemma
Given a hypergraph H with v(H) ≥ 2, the following assertions are
equivalent :

1. H is disconnected;
2. H admits a modular bipartition P such that H/P is empty;
3. Π(H) = {V (C) : C ∈ C(H)}, |Π(H)| ≥ 2, and H/Π(H)

is empty.
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Proof of Theorem 1

Let H be a hypergraph such that v(H) ≥ 2. Because of the
maximality of the elements of Π(H), it follows from the second
assertion of the previous Proposition that all the strong modules of
H/Π(H) are trivial. We establish the following result.

Theorem 2
Given a hypergraph H, all the strong modules of H are trivial if and
only if H is an empty hypergraph, a prime hypergraph or a complete
graph.
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Theorem 2
Given a hypergraph H, all the strong modules of H are trivial if and
only if H is an empty hypergraph, a prime hypergraph or a complete
graph.
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Proof of Theorem 1

For a contradiction, suppose that H/Π(H) admits a nontrivial
strong module S. ∪S is a strong module of H. Given X ∈ S, we
obtain X ( ∪S ( V (H), which contradicts the maximality of X .
Consequently, all the strong modules of H/Π(H) are trivial. To
conclude, it suffices to apply Theorem 2 to H/Π(H).
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Some useful notations

Let H be a hypergraph. As for tournaments, the set of the nonempty
strong modules of H is denoted by D(H). Clearly, D(H) ordered
by inclusion is a tree. It is called the modular decomposition tree
of H. For convenience, set D≥2(H) = {X ∈ D(H) : |X| ≥ 2}.
Moreover, we associate with each X ∈ D≥2(H), the label εH(X)

defined as follows:

εH(X) =


4 if H[X]/Π(H[X]) is prime,
o if H[X]/Π(H[X]) is empty ,
• if H[X]/Π(H[X]) is a complete graph.
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Modular partition of hypergraphs

Proposition
Given a hypergraph H, consider a strong module M of H. For every
N ⊆ M, the following two assertions are equivalent:

1. N is a strong module of H;

2. N is a strong module of H[M].
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Notation
Let H be a 3-uniform hypergraph. For W ⊆ V (H) such that
W 6= ∅, W̃ H denotes the intersection of the strong modules of H
containing W . Note that W̃ H is the smallest strong module of H
containing W .

Notation
Let T be a tournament. For a subset W of V (T), set qT W =
{v ∈ V (T) r W is not a module of T [W ∪ {v}]} Consider a
realizable and 3-uniform hypergraph. Let T be a realization of H.
A module of T is clearly a module of H, but the converse is false.
Nevertheless, we have the following result. Its proof is arduous and
somewhat long, but it is central to establish Theorem 3.
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Key Proposition

The key proposition in this study is the following.

Key Proposition
Let H be a realizable and 3-uniform hypergraph. Consider a realiza-
tion T of H. Let M be a module of H. If M is not a module of T ,
then the following four assertions hold.

1 M ∪ (qT M) is a module of T ;
2 M is not a strong module of H;
3 M ∪ (qT M) ⊆ M̃H ;
4 H(M̃H) = o and

∣∣∣(H[M̃H])
∣∣∣ ≥ 3.
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Key result

The next theorem is a key result. A realizable 3-uniform hypergraph
and its realizations do not have the same modules, they share the
same strong module.

Theorem 3
Consider a realizable and 3-uniform hypergraph H. Given a realiza-
tion T of H, H and T share the same strong modules.
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We establish Theorem 4 by using Theorems 2 and 3.

Theorem 4
Consider a realizable 3-uniform hypergraph H. For a realization T
of H, we have H is prime if and only if T is prime.

Proof of Theorem 4
Suppose that H is prime. Since all the modules of T are modules of
H, T is prime. Conversely, suppose that T is prime. Hence, all the
strong modules of T are trivial. By Theorem 3, all the strong modules
of H are trivial. We obtain Π(H) = {{v} : v ∈ V (H)} Thus, H
is isomorphic to H/Π(H). It follows from Theorem 1 that H is an
empty hypergraph, a prime hypergraph or a complete graph. Since
T is prime, we have E(C3(T)) 6= ∅. Since E(C3(T)) = E(H),
there exists e ∈ E(H) such that |e| = 3. Therefore, H is not an
empty hypergraph, and H is not a graph.It follows that H is prime.
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Characterization of realizable 3-uniform hypergraphs

Now, we characterize the realizable 3-uniform hypergraphs. To begin,
we establish the following theorem by using the modular decompo-
sition tree. We prove that a 3-uniform hypergraph is realizable if
and only if all its prime, 3-uniform and induced subhypergraphs are
realizable.

Theorem 5 (General case)
Given a 3-uniform hypergraph H, H is realizable if and only if for
every W ⊆ V (H) such that H[W ] is prime, H[W ] is realizable.
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Critical case

Theorem 6 (Critical case)
Given a critical and 3-uniform hypergraph H, H is realizable if and
only if v(H) is odd, and H is isomorphic to C3(Tv(H)), C3(Uv(H))
or C3(Wv(H)).
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Realizability of 3-uniform hypergraphs

The next proposition is useful to construct realizations from the
modular decomposition tree. We need the following notation and
remark.
Notation
Let H be a 3−uniform hypergraph. We denote by R(H) the set of
the realizations of H.
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Realizability of 3-uniform hypergraphs

Let H be a 3-uniform hypergraph. Consider T ∈ R(H). It follows
from Theorem 11 that D(H) = D(T). For each X ∈ D≥2(H),
we have Π(H[X]) = Π(T [X]).
Therefore,

∀X ∈ D≥2(H),T [X]/Π(T [X]) ∈ R(H[X]/Π(H[X])).

Set,

RD(H) =
⋃

X∈D≥2(H)

R(H[X]/Π(H[X])).

Mohamed Zaidi About 3-uniform hypergraphs



42/56

Introduction.
Realization and decomposability

Realizability of 3-uniform hypergraphs
Thanks

Realizability of 3-uniform hypergraphs

We denote by δH(T) the function

D≥2(H) −→ RD(H)
Y 7−→ T [Y ]/Π(T [Y ])

Lastly, denote by ϕ(H) the set of the functions f from D≥2(H) to
RD(H) satisfying ∀Y ∈ D≥2(H), f (Y ) ∈ R(H[Y ]/Π(H[Y ])).
Under this notation, we obtain the function

δH : R(H) −→ ϕ(H)
T 7−→ δH(T)
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Realizability of 3-uniform hypergraphs

Proposition 2
For a 3-uniform hypergraph H, δH is a bijection.

Theorem (Critical case)

Given a critical and 3-uniform hypergraph H, H is realizable if and
only if v(H) is odd, and H is isomorphic to C3(Tv(H)), C3(Uv(H))
ou C3(Wv(H)).
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Realizability of 3-uniform hypergraphs

Now, we characterize the non critical, prime and 3-uniform hyper-
graphs that are realizable. We need the following notation.

Notation

Let H be a 3-uniform hypergraph. Consider a vertex ω of H. Set
Vω = V (H) r {ω}. We denote by Gω the graph defined on Vω
as follows. Given distinct elements v and v ′ of Vω, vv ′ ∈ E(Gω) if
ωvv ′ ∈ E(H). Also, we denote by Iω the set of the isolated vertices
of Gω.
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Realizability of 3-uniform hypergraphs

Notation

Let T be a tournament. Consider W ,W ′ ⊆ V (T) such that
W ∩W ′ = ∅. We denote by (W � W ′)T the subset of ω′ ∈ W ′

such that there exists a sequence ω0, . . . , ωn satisfying
ω0 ∈ W , ωn = ω′;
ω1, . . . , ωn ∈ W ′;
for i = 0, . . . , n − 1, ωiωi+1 ∈ A(T).
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Theorem (Prime, non critical case)

Let H be a non critical, prime, and 3-uniform hypergraph. Consider a
vertex ω of H such that H−ω is prime. The 3-uniform hypergraph
H is realizable if and only if H − ω admits a realization, say Tω,
satisfying the following two assertions:
(M1) There exists a bipartition {X,Y} of Vω r Iω satisfying
(i) for each component C of Gω, with v(C) ≥ 2, C is bipartite
with bipartition {X ∩ V (C); Y ∩ V (C)};
(ii) ∀x ∈ X, y ∈ Y , we have xy ∈ E(Gω) ⇐⇒ xy ∈ A(Tω).
(M2) (X � Iω)Tω

∩ (Y � Iω)
(Tω)∗ = ∅, (X � Iω)Tω

∪ (Y �
Iω)

(Tω)∗ = Iω. Furthermore, for x ∈ X , y ∈ Y , x+ ∈ (X � Iω)Tω

and y− ∈ (Y � Iω)
(Tω)∗ , we have y−x, yx+; y−x+ ∈ A(Tω).
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Realizability of 3-uniform hypergraphs

We conclude by counting the number of realizations of a realizable
and 3-uniform hypergraph. We need the following notation.

Notation
Let H be a 3-uniform hypergraph. Set
D4(H) = {X ∈ D≥2(H) : εH(X) = 4}

and
Do(H) = {X ∈ D≥2(H) : εH(X) = o}

Corollary
For a realizable and 3-uniform hypergraph, we have

|R(H)| = 2|D4(H)| ×
∏

X∈D◦(H)

|Π(H[X]|!
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We conclude by counting the number of realizations of a realizable
and 3-uniform hypergraph. We need the following notation.

Notation
Let H be a 3-uniform hypergraph. Set
D4(H) = {X ∈ D≥2(H) : εH(X) = 4}

and
Do(H) = {X ∈ D≥2(H) : εH(X) = o}

Corollary
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Caractérisation des graphes non orientés dont on peut orienter
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