Towards Lehel's conjecture for 4-uniform tight cycles

Vincent Pfenninger

University of Birmingham

Joint work with Allan Lo

8th Polish Combinatorial Conference 2020

Vincent Pfenninger (UoB) Towards Lehel’s conj. for tight cycles

PCC 2020 1/12



Edge-Coloured Complete Graphs

We will consider edge-colourings of the complete graph. That is the
assignment of colours to the edges in any way.

By a monochromatic subgraph we mean a subgraph where all the edges
are assigned the same colour.

Does every red-blue edge-coloured K, contain a monochromatic spanning
tree?
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Edge-Coloured Complete Graphs

Answer: Yes! Assume that there is no blue spanning tree. Hence there are
two vertices v and v such that there is no blue path between v and v. In
particular, the edge uv is red. Let x be any other vertex.
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Edge-Coloured Complete Graphs

Answer: Yes! Assume that there is no blue spanning tree. Hence there are
two vertices v and v such that there is no blue path between v and v. In
particular, the edge uv is red. Let x be any other vertex.

Since there is no blue path from u to v, at least one of the edges xu and
xv is red. It follows that there is a red spanning tree.

X
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Monochromatic Cycles?

Lehel's Conjecture

Every red-blue edge-coloured K, can be partitioned into a red and a blue
cycle.

We consider the empty set, a single vertex, and a single edge to be cycles.

Theorem (Luczak, Rodl, Szemerédi 1998, Allen 2008)

Lehel’s conjecture is true for all n > ng.

Theorem (Bessy, Thomassé 2010)

Lehel’s conjecture is true for all n.

From now on we will assume that n is large enough and that all cycles are
vertex-disjoint and monochromatic.
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r Colours

Conjecture (Erdds, Gyarfas, Pyber 1991)

Every r-edge-coloured K, can be partitioned into r monochromatic cycles.

Known results:
e cr’logr cycles (Erdds, Gyarfas, Pyber 1991)
@ 100r log r cycles (Gyarfas, Ruszinkd, Sarkozy, Szemerédi 2006)

@ The conjecture is false. For r > 3, more than r cycles are needed.
(Pokrovskiy 2014)

Conjecture (Pokrovskiy 2014)

Every r-edge-coloured K, contains r monochromatic cycles that cover all
but ¢, of the vertices.

Q: What about hypergraphs?
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Cycles in Hypergraphs: Definition

A k-graph H is an pair of sets (V(H), E(H)) where E(H) C (V(kH)).
An (-cycle has a cyclic ordering of its vertices such that its edges consist
of k consecutive vertices and consecutive edges intersect in ¢ vertices.

k=3/¢=1 k=3/¢=2
1-cycle (k — 1)-cycle
loose cycle tight cycle
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Results for Loose Cycles and ¢-Cycles

In k-graphs we consider any set of vertices of size at most k to be a
degenerate cycle.
For r colours:

Theorem (Sarkozy 2014)

Every r-edge-coloured KX can be partitioned into at most 50rk log(rk)
monochromatic loose cycles.

For 2 colours:

Theorem (Bustamante, Stein 2018)

If 0 < ¢ < k/2 and k — ¢ divides n, then every red-blue edge-coloured KX
contains a red and a blue ¢-cycle that are disjoint and cover all but at
most 4(k — £) of the vertices.
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Results for Tight Cycles

For r colours:

Theorem (Bustamante, Corsten, Frankl, Pokrovskiy, Skokan 2020)

Every r-edge-coloured KX can be partitioned into at most c(r, k)
monochromatic tight cycles.

For 2 colours in the 3-uniform case:

Theorem (Bustamante, Han, Stein 2019)

Every red-blue edge-coloured K3 contains a red and a blue tight cycle that
together cover (1 — o(1))n vertices.

Theorem (Garbe, Mycroft, Lang, Lo, Sanhueza-Matamala 2020+)

Every red-blue edge-coloured K> can be partitioned into two
monochromatic tight cycles.
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Our Results

How many monochromatic tight cycles do we need to almost partition KX?
In the 4-uniform case 2 cycles is enough:

Theorem (Lo, P 2020+)

Every red-blue edge-coloured K} contains a red and a blue tight cycle that
together cover (1 — o(1))n vertices.

In the 5-uniform case, we proved that 4 cycles are enough:

Theorem (Lo, P 2020+)

Every red-blue edge-coloured K? contains four monochromatic tight cycles
that together cover (1 — o(1))n vertices.

We prove these results by using a hypergraph version of tuczak's
Connected Matching Method.
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Luczak's Connected Matching Method (Graph Version)

@ Apply the regularity lemma to the graph induced by the red edges.

Regularity Partition Reduced Graph
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Luczak's Connected Matching Method (Graph Version)

@ Apply the regularity lemma to the graph induced by the red edges.
@ In the reduced graph, pick a red component R and a blue component
B such that R U B contains a large matching M.

Regularity Partition Reduced Graph
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Luczak's Connected Matching Method (Graph Version)

@ Apply the regularity lemma to the graph induced by the red edges.
@ In the reduced graph, pick a red component R and a blue component
B such that R U B contains a large matching M.

Regularity Partition Reduced Graph

OO0 =
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Luczak's Connected Matching Method (Graph Version)

@ Apply the regularity lemma to the graph induced by the red edges.
@ In the reduced graph, pick a red component R and a blue component
B such that R U B contains a large matching M.

Regularity Partition Reduced Graph
Vi Vs V3
1 B 2 3
R >< M
Q Q Q 4 5 6
Va Vs Ve
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Luczak's Connected Matching Method (Graph Version)

@ Apply the regularity lemma to the graph induced by the red edges.

@ In the reduced graph, pick a red component R and a blue component
B such that R U B contains a large matching M.

© Using the matching M find a red and a blue cycle in the K, that
cover almost all the vertices.

Regularity Partition Reduced Graph

OO0 w4
SOOI~
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Luczak's Connected Matching Method (Graph Version)

@ Apply the regularity lemma to the graph induced by the red edges.

@ In the reduced graph, pick a red component R and a blue component
B such that R U B contains a large matching M.

© Using the matching M find a red and a blue cycle in the K, that
cover almost all the vertices.

Regularity Partition Reduced Graph
Vi Va V3
1 B 2 3
R >< M
Q Q 4 5
Vy Vs Ve
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Luczak's Connected Matching Method (Graph Version)

@ Apply the regularity lemma to the graph induced by the red edges.

@ In the reduced graph, pick a red component R and a blue component
B such that R U B contains a large matching M.

© Using the matching M find a red and a blue cycle in the K, that
cover almost all the vertices.

Regularity Partition Reduced Graph
Vi Vs V3

O KA.
e X

Vi Vs Ve
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Luczak's Connected Matching Method (Graph Version)

@ Apply the regularity lemma to the graph induced by the red edges.

@ In the reduced graph, pick a red component R and a blue component
B such that R U B contains a large matching M.

© Using the matching M find a red and a blue cycle in the K, that
cover almost all the vertices.

Regularity Partition Reduced Graph
Vi Va V3
1 B 2 3
X
R >< M
4 5 6
Vy Vs Ve
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Luczak's Connected Matching Method (Graph Version)

@ Apply the regularity lemma to the graph induced by the red edges.

@ In the reduced graph, pick a red component R and a blue component
B such that R U B contains a large matching M.

© Using the matching M find a red and a blue cycle in the K, that
cover almost all the vertices.

Regularity Partition Reduced Graph
Vi Va V3
1 B 2 3
X
R >< M
4 5 6
Vy Vs Ve
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Idea for the Proof in the 4-Uniform Case

Theorem (Lo, P 2020+)

Every red-blue edge-coloured K2 contains a red and a blue tight cycle that
together cover (1 — o(1))n vertices.

Using tuczak's idea we reduce the problem to proving the following.

Every red-blue edge-coloured (almost) complete 4-graph H contains a red

tight component! R and a blue tight component B such that RU B
contains a large matching.

How do we choose the tight components R and B?

To do this we construct an auxiliary graph (the blueprint).

LA tight component is a set of edges F such that, for any e, f € F, there exist
el,...,e € Fwithei=e, e, =f, and |ei N 11| = 3.
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Constructing the Blueprint

To find R and B we define an auxiliary red-blue edge-coloured graph (the
blueprint) on the same vertex set as H.

V(H) Hyy

@ For each pair xy in V(H), we consider the link graph H,, that has an
edge ab for each edge abxy in H and the edge ab inherits the colour
of the edge abxy.
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Constructing the Blueprint

To find R and B we define an auxiliary red-blue edge-coloured graph (the
blueprint) on the same vertex set as H.

V(H) Hyy

@ For each pair xy in V(H), we consider the link graph H,, that has an
edge ab for each edge abxy in H and the edge ab inherits the colour
of the edge abxy.

@ Since H,y is almost complete, it contains a large monochromatic
component. We colour the edge xy in the blueprint accordingly. We
colour all pairs of vertices in V(H) in this way.
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Constructing the Blueprint

To find R and B we define an auxiliary red-blue edge-coloured graph (the
blueprint) on the same vertex set as H.

V(H) Hyy

induce ared edge xy a p €

@ For each pair xy in V(H), we consider the link graph H,, that has an
edge ab for each edge abxy in H and the edge ab inherits the colour
of the edge abxy.
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To find R and B we define an auxiliary red-blue edge-coloured graph (the
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Constructing the Blueprint

To find R and B we define an auxiliary red-blue edge-coloured graph (the
blueprint) on the same vertex set as H.

© After deleting some vertices and edges, components in the blueprint
correspond to tight components in H.
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Constructing the Blueprint

To find R and B we define an auxiliary red-blue edge-coloured graph (the
blueprint) on the same vertex set as H.

V(H)

large monochromatic
component in the blueprint

© After deleting some vertices and edges, components in the blueprint
correspond to tight components in H.

@ Since the blueprint is almost complete, it has a large monochromatic
component. This component corresponds to a large monochromatic
component in H which will be our initial choice for R or B.
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Constructing the Blueprint

To find R and B we define an auxiliary red-blue edge-coloured graph (the
blueprint) on the same vertex set as H.

V(H)

matching in the red
tight component R

© We then find a matching in R. If that matching is not big enough, we
use an additional argument to find a blue tight component B such
that R U B contains a large matching.
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Can every red-blue edge-coloured K? be partitioned into two
monochromatic tight cycles?

The following example shows that we need to allow the two tight cycles to
possibly have the same colour.

[ X|=3m+2 Y| =m+2
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Can every red-blue edge-coloured K? be partitioned into two
monochromatic tight cycles?

The following example shows that we need to allow the two tight cycles to
possibly have the same colour.

|X|=3m+2 lY[=m+2

Thank you!
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