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Discrete exponential families – Notation

X = {x1, . . . , xK} – finite state space

B ⊂ RX – linear space of functions (φ ≡ 1 ∈ B)

B+ = {φ ∈ B : φ ≥ 0} – subclass (cone) of non-negative functions

e(φ) = exp{φ}/Z (φ) – exponential density

Z (φ) – normalising constant (partition function)

e(B) = {p = e(φ) : φ ∈ B} – exponential family

Lp(x1, . . . , xn) =
n∏

i=1
p(xi ), xi ∈ X – likelihood function
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MLE

Definition
Let x1, . . . , xn be a sample from the finite set X and let φ ∈ B. The
likelihood function of p = e(φ) is defined as:

Lp(x1, . . . , xn) =
n∏

i=1

p(xi ).

To facilitate the calculations the log-likelihood function is being often used:
`p(x1, . . . , xn) = log Lp(x1, . . . , xn).

Definition
The p̂ ∈ e(B) is called the maximum likelihood estimator (MLE), if

Lp̂(x1, . . . , xn) = sup
p∈e(B)

Lp(x1, . . . , xn).
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Existence of MLE

History
O. Barndorff-Nielsen (1978) – criterion of existence of MLE of a parameter (from
the exponential family) for a given sample x1, . . . , xn.

Beautiful, but cumbersome to apply

S. J. Haberman (1974) – criterion of MLE existence in hierarchical log-linear
models

N. Eriksson, S. E. Fienberg, A. Rinaldo, S. Sullivant (2006) – interpreting the
above criterion in terms of polyhedral geometry

K. Bogdan, M. Bogdan (2000) – criterion of MLE existence for exponential
families of continuous functions on [0, 1].

A. Rinaldo, S. E. Fienberg, Y. Zhou (2009) – application of MLE existence in
exponential random graph models (ERGM).

K. Bogdan, M. Bosy, TS (2020+) – criterion of MLE existence in discrete
exponential families.
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Sets of uniqueness

Definition
We say that U ⊂ X is a set of uniqueness for B, if φ ≡ 0 is the only
function in B such that φ (U) = 0.

Example
Let X = {−2,−1, 0, 1, 2}. Let B denote the class of all the real functions on X
that are linear (affine) on {−2,−1, 0} and on {0, 1, 2}.

−2 −1 0 1 2
−2

−1

0

1

2

φ(x) = x/2− |3x/2|+ 2

Then the set {−2, 2} is of uniqueness for B, but the set {−1, 2} is not.
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Remark
U is a set of uniqueness for B+, if φ ∈ B+ and [ φ (U) = 0 ]⇒ [ φ ≡ 0 ].

Example
Again, let X = {−2,−1, 0, 1, 2} and let B be the class of all the real
functions on X that are linear (affine) on {−2,−1, 0} and on {0, 1, 2}.

−2 −1 0 1 2
−2

−1

0

1

2

φ(x) = 0

Then the set {−1, 2} is of uniqueness for B+.
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MLE existence – main criterion

Theorem (K. Bogdan, M. Bosy, TS (2020+))
The maximum likelihood estimator for e(B) and x1, . . . , xn ∈ X exists if
and only if {x1, . . . , xn} is a set of uniqueness for B+.
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Applications

Maximization of likelihood is fundamental in estimation, model selection
and testing. In many procedures it is important to know if MLE actually
exists for given data x1 . . . , xn and the linear space of exponents.
There are two types of results obtained with sets of uniqueness we propose
below:

Conditions for existence of MLE
Probability bounds for MLE for an i.i.d. sample

For the i.i.d. random variables valued in X it will be useful to define the
random (stopping) time:

νuniq = inf{n ≥ 1 : {X1, . . . ,Xn} is a set of uniqueness for B+}
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Applications – RX

Let B = RX . As X is the only one set of uniqueness in this setting, one
may observe that

Lemma
MLE for e(RX ) and x1, . . . , xn exists if and only if {x1, . . . , xn} = X .

Thus, the problem of obtaining the existence of MLE for {x1, . . . , xn}
resembles the Coupon Collector Problem. Therefore

Corollary

Let B = RX and K = |X |. Let X1,X2, . . . be independent random
variables, each with uniform distribution on X . Then, for every c ∈ R,

lim
K→∞

(νuniq < K logK + Kc) = e−e
−c
.

In particular, K logK is a sharp threshold for the sample size for the
existence of MLE for e(X ).
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Applications – Rademacher functions

For k ∈ N consider the hypercube X = Qk = {−1, 1}k . Let
K = |X | = 2k .
For j = 1, . . . , k and χ = (χ1, . . . , χk) ∈ Qk we define Rademacher
functions:

rj(χ) = χj ,

and we denote r0(χ) = 1. In other words, the Rademacher functions may
be seen as affine transforms of the indicators of half-cubes.

Observation
Moreover, the linear space of products of q Rademacher functions
corresponds to the linear space of indicators of sub-cubes of Qk created by
fixing q of k coordinates.
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Applications – Rademacher functions

Theorem (K. Bogdan, M. Bosy, TS (2020+))

Let Bk = Lin{r0, r1, . . . , rk}. MLE for e(Bk) and x1, . . . , xn ∈ Qk exists if
and only if for all j = 1, . . . , k we have {rj(x1), . . . , rj(xn)} = {−1, 1}.

In other words, the condition above is satisfied if and only if {x1, . . . , xn}
intersects with every half-cube of Qk .

Theorem (K. Bogdan, M. Bosy, TS (2020+))
Let k ∈ N, n(k) = log2 k + b + o(1). Let X1, . . . ,Xn(k) be independent
random variables, each with uniform distribution on Qk . Then

lim
k→∞

P({X1, . . . ,Xn(k)} is a set of uniqueness for B+) =

= exp{−21−b}.

and log2 k = log2 log2 K is a sharp threshold of the sample size for the
existence of MLE for e(Bk) and i.i.d. uniform samples on Qk .
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Applications – ERGM

Below we only consider simple undirected graphs containing no loops or
multiple edges. Let N and m denote the number of vertices and edges,
respectively. Let us denote GN as the family of all the graphs with N
vertices.
For graphs G = (V ,E1), H = (V ,E2) we let, as usual,

G ∪ H := (V ,E1 ∪ E2), G ∩ H := (V ,E1 ∩ E2).

Also, by G ⊂ H we mean that E1 ⊂ E2.
We define χr ,s : GN → {−1, 1} by χr ,s(G ) = 1− 21G (r , s) and consider
the following linear space

BGN = Lin
{

1, χr ,s(G ) : 1 ≤ r < s ≤ N

}
.
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We also consider coefficients c ∈ R(V2) corresponding to all edges
of a complete graph KN and the following exponential family:

GN,c := e(BGN ) =
{
pc := eφc−ψ(φc ) : c ∈ R(V2)

}
,

where

φc(G ) =
∑

(r ,s)∈(V2)

cr ,sχr ,s(G ), ψ(φc) = log
∑
G∈GN

eφc (G),

for G ∈ GN .

Observation

Fix c ∈ R(V2). Then in the random graph G sampled from GN,c each edge
(r , s) appears independently with probability

pr ,s =
ecr,s

1+ ecr,s
.
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Applications – ERGM

Theorem (K. Bogdan, M. Bosy, TS (2020+))

MLE for e(BGN ) and G1, . . . ,Gn ∈ GN exists if and only if

n⋃
i=1

Gi = KN and
n⋂

i=1

Gi = KN .

Lemma (K. Bogdan, M. Bosy, TS (2020+))

Let {G1, . . . ,Gn} be independently distributed random graphs from GN,c .
Then the probability of the existence of MLE for e(BGN ) equals∏

1≤r<s≤N

(
1− pnr ,s − (1− pr ,s)

n) .
In particular, logN is a threshold of the sample size n for the existence of
MLE for e(BGN ).
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Applications – Products of Rademacher functions

Let k ∈ N, 1 ≤ q ≤ k , and Bkq = Lin{wS : S ⊂ {1, . . . , k} and |S | ≤ q},
where wS(x) =

∏
i∈S

ri (x), x ∈ Qk ,S ⊂ {1, . . . , k}, are the Walsh functions.

Recall the previously mentioned observation:

Observation
The linear space of products of q Rademacher functions corresponds to the
linear space of indicators of sub-cubes of Qk created by fixing q of k
coordinates.

q = 1: Rademacher functions (already considered)
q = 2: connections with the Ising model
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Applications – Products of (k − 1) Rademacher functions

Bkk−1 corresponds to indicators of edges of Qk . Consider a following
partition of Qk = E ·∪ O:

Definition
E := {χ ∈ Qk : χ has even number of positive coordinates}
O := {χ ∈ Qk : χ has odd number of positive coordinates}

Theorem (K. Bogdan, M. Bosy, TS (2020+))

MLE exists for e(Bkk−1) and x1, . . . , xn ∈ Qk if and only if E ⊂ {x1, . . . , xn}
or O ⊂ {x1, . . . , xn}.
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Dynkin system

Definition

Let X be a non-empty set, and let D be a collection of subsets of X . D is called
a Dynkin system if the following conditions hold:

X ∈ D;

if A,B ∈ D and A ⊂ B, then B \ A ∈ D;

if A1,A2,A3, · · · ∈ D and Aj ⊂ Aj+1 for j ∈ N, then
∞⋃
j=1

Aj ∈ D.

Let Y be a collection of subsets of X . The smallest Dynkin system containing Y
is called the Dynkin system generated by Y, denoted D(Y).

Let 1 ≤ q ≤ k . Define Sk
q as set of all (k − q)-dimensional subcubes of Qk .

Lemma
If U is a set of uniqueness for Bkq+ , then U intersects with every non-empty
element of D(Sk

q ).
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Dynkin system

Lemma
If U is a set of uniqueness for Bkq+ , then U intersects with every non-empty
element of D(Sk

q ).

For q = 1 and q = k − 1 the above implication can be replaced with an
equivalence. For general q the converse implication is false:
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Counterexample (k = 4, q = 2)
Let k = 4 and q = 2. The following set (which consists of all points with
exactly 0, 1 or 4 positive coordinates) intersects with every non-empty
element of D(S4

2 ), but its not of uniqueness for
(
B4

2
)
+
.

−+−−

−−+−

+−−− −−−−

++++

−−−+
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Dynkin multi-system

Definition

Let X be a non-empty set, and let D be a collection of subsets of X . D is
called a multi-Dynkin system if the following conditions hold:

X ∈ D;
if A,B ∈ D and A ⊂ B , then B − A ∈ D;

if A1,A2,A3, · · · ∈ D, then
∞∑
j=1

Aj ∈ D.

Analogously, let Y be a collection of multi-sets in X . The smallest
multi-Dynkin system containing Y is called the multi-Dynkin system
generated by Y, denotedMD(Y).
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Dynkin multi-system

Observation
For each family F of sets we have

D(F) ⊂MD(F).

Theorem (K. Bogdan, TS, T. Stroiński (in preparation))

Let X be a finite set and let S ⊂ 2X . Then the set U ⊂ X is of uniqueness
for (BS)+ if and only if U has a non-empty intersection with each
non-empty member of a multi-Dynkin systemMD(S) generated by S.
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