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Standard notation

The letter p denotes a (large) prime. Fp is the finite field with p
elements. The function ep is the usual additive character
ep(x) = e2πix/p. The function 1A is the indicator function of a set
A.

Polynomials P1, ...,Pm are integral if they have integer coefficients
and satisfy P1(0) = ... = Pm(0) = 0.

We denote f � g or f = O(g) if there exists an absolute constant
C > 0 such that |f (N)| 6 Cg(N) for all sufficiently large natural
numbers N. We write f = Om(g) if the absolute constant depends
on parameter m. We also write f = o(g) if f (N)/g(N)→ 0 as
N →∞.

Ex∈X = 1
|X |

∑
x∈X is the average over the set X .
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Additive combinatorics

Additive combinatorics studies arithmetic structures in subsets of
N, Fp, Fp[t], etc.

Examples of arithmetic structures:

arithmetic progressions: x , x + y , ..., x + (m − 1)y

polynomial progressions: x , x + P1(y), ..., x + Pm(y)

solutions to linear equations: a1x1 + ...+ anxn = b

solutions to quadratic equations: a1x
2
1 + ...+ anx

2
n = b
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Polynomial progressions

A polynomial progression is a configuration of the form

x , x + P1(y), ..., x + Pm(y)

for some polynomials P1, ...,Pm ∈ Z[y ] satisfying

P1(0) = ... = Pm(0) = 0.

Examples:

x , x + y , ..., x + (m − 1)y (arithmetic progressions)

x , x + y , ..., x + ym−1 (geometric progressions shifted by x)

x , x + y , x + 2y , x + y2

x , x + y , x + y2, x + y + y2.
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Algebraic relations in polynomial progressions

We can differentiate between various progressions based on how
many algebraic relations of the form

Q0(x) + Q1(x + P1(y)) + ...+ Qm−1(x + Pm−1(y)) = 0

they satisfy.

On one hand, we have arithmetic progressions which satisfy plenty
of algebraic relations. For instance, x , x + y , x + 2y , x + 3y
satisfies

two linear relations: x + (x + 2y) = 2(x + y) and
(x + y) + (x + 3y) = 2(x + 2y),

a quadratic relation:
x2 − 3(x + y)2 + 3(x + 2y)2 − (x + 3y)2 = 0.

By contrast, the shifted geometric progression
x , x + y , x + y2, ..., x + ym−1 satisfies no such algebraic relations.
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Szemerédi theorem

Theorem (Szemerédi, 1975)

Let A be a dense subset of natural numbers, and suppose m > 3 is
an integer. Then A contains an arithmetic progression of length m,
i.e. a configuration of the form

x , x + y , ..., x + (m − 1)y

for some x , y ∈ N with y 6= 0.

Note: A ⊂ N is dense if lim supN→∞
|A∩{1,...,N}|

N > 0 and sparse
otherwise. For instance

the set 2N = {2, 4, 6, ...} is dense with density 1
2 ,

the set of primes is sparse because there are ∼ N
log N primes in

{1, ...,N} (but primes are still known to contain arithmetic
progressions of arbitrary length - see Green-Tao theorem).
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Polynomial Szemerédi theorem

Szemerédi theorem has been significantly generalised.

Theorem (Bergelson & Leibman, 1996)

Let P1, ...,Pm be integral polynomials, i.e. polynomials with integer
coefficients and P1(0) = ... = Pm(0) = 0. Then each dense subset
of natural numbers contains a polynomial progression of the form

x , x + P1(y), ..., x + Pm(y)

for x , y ∈ N with y 6= 0.

The theorem need not be true if the condition

P1(0) = ... = Pm(0) = 0

is not satisfied. Let P(y) = y2 + 1. Then P(y) 6= 0 mod 3 for
y ∈ Z. Hence 3N does not contain x , x + P(y).
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Polynomial Szemerédi theorem in finite fields

Theorem (Polynomial Szemerédi theorem, finitary version)

Let P1, ...,Pm be integral polynomials and 0 < α < 1. There exists
N0 = N0(α) ∈ N such that for all N > N0, each subset of
{1, ...,N} of size at least αN contains

x , x + P1(y), ..., x + Pm(y)

for y 6= 0.

Theorem (Polynomial Szemerédi theorem in finite fields)

Let P1, ...,Pm be integral polynomials and 0 < α < 1. There exists
p0 = p0(α) ∈ N such that for all primes p > p0, each subset of Fp

of size at least αp contains

x , x + P1(y), ..., x + Pm(y)

for y 6= 0.
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Theorem (Polynomial Szemerédi theorem in finite fields)

Let P1, ...,Pm be integral polynomials and 0 < α < 1. There exists
p0 = p0(α) ∈ N such that for all primes p > p0, each subset of Fp

of size at least αp contains

x , x + P1(y), ..., x + Pm(y)

for y 6= 0.

Once we fix polynomials P1, ...,Pm, can we say anything about the
number of polynomial progressions of the form

x , x + P1(y), ..., x + Pm(y)

in a subset A ⊆ Fp?

This is our big question.
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Counting arithmetic progressions in subsets of finite fields

One of the corollaries of Szeméredi theorem is the following
statement.

Theorem (Varnavides, 1959)

Let α > 0 and m > 3. Then there exist cα,m > 0 such that for all
primes p, each subset A ⊆ Fp of size αp contains at least cα,mp

2

arithmetic progressions of length m.

We have lower bounds on cα,m. For instance, we can take

cα,3 = exp(−Cα−(1−c))

for some c ,C > 0 by (Bloom & Sisask, 2020).
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Counting linearly independent configurations

How about other polynomial progressions?

Theorem (Peluse, 2019)

Let m > 3 and A ⊆ Fp have size |A| = αp. There exists cm > 0
such that

|{(x , x + y , ..., x + ym−1) ∈ Am}| = αmp2 + Om(p2−cm).

More generally, the result holds if we replace y , ..., ym−1 by any
m − 1 linearly independent integral polynomials (the absolute
constants in the error term depend on the choice of polynomials).

In particular, Peluse’s theorem imply that all subsets of Fp of size
at least Cmp

1−c ′m for some c ′m,Cm > 0 contain

x , x + y , ..., x + ym−1

with y 6= 0.
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Arithmetic progressions with higher-power differences

Theorem (K., 2020)

Let m > 3, k > 2 and A ⊆ Fp. There exists cm,k > 0 such that

|{(x , x + yk , ..., x + (m − 1)yk) ∈ Am}|

=
1

k
|{(x , x + y , ..., x + (m − 1)y) ∈ Am}|+ Om,k(p2−cm,k ).

Hence the number of arithmetic progressions with, say, square or
cubic differences in subsets of finite fields is of the same order of
magnitude as the number of all arithmetic progressions.
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Arithmetic progressions with higher-power differences

Theorem (K., 2020)

Let m > 3, k > 2 and A ⊆ Fp. There exists cm,k > 0 such that

|{(x , x + yk , ..., x + (m − 1)yk) ∈ Am}|

=
1

k
|{(x , x + y , ..., x + (m − 1)y) ∈ Am}|+ Om,k(p2−cm,k ).

We remarked before that a set A ⊂ Fp of size αp would contain at
least c ′m,kp

2 m-term arithmetic progressions for some c ′m,k > 0,
hence the result above implies a special case of the polynomial
Szemerédi theorem in finite fields.
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Counting other polynomial progressions

Theorem (K., 2020)

Suppose A ⊆ Fp. There exists c > 0 such that

|{(x , x + y , x + 2y , x + y3) ∈ A4}|

= {(x , x + y , x + 2y) ∈ A3}| · |A|
p

+ O(p2−c).

The same result (with different values of absolute constants) holds
if we replace y3 in the last term by any polynomial of degree at
least 3, but not if we replace it by y2 or another quadratic. We will
explain this later.
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Counting other polynomial progressions

And one more.

Theorem (K., 2020)

Suppose A ⊆ Fp. Then

|{(x , x + y , x + y2, x + y + y2) ∈ A4}|
= {(x , x + y , x + z , x + y + z) ∈ A4}|/p + o(p2).

Borys Kuca University of Manchester Counting polynomial configurations in subsets of finite fields



How to prove an asymptotic count?

How would we prove a result like this?

Theorem (K., 2020)

Suppose A ⊆ Fp. There exists c > 0 such that

|{(x , x + y , x + 2y , x + y3) ∈ A4}|

= {(x , x + y , x + 2y) ∈ A3}| · |A|
p

+ O(p2−c).
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A functional version of the problem

Instead of working with

|{(x , y) ∈ F2
p : (x , x + y , x + 2y , x + y3) ∈ A4}|

we look at

Ex ,y∈Fp1A(x)1A(x + y)1A(x + 2y)1A(x + y3).

More generally, we need to analyse

Ex ,y∈Fp f1(x)f2(x + y)f3(x + 2y)f4(x + y3)

for f1, f2, f3, f4 : Fp → C that are 1-bounded (i.e. |fi (x)| 6 1).
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A functional version of the counting theorem

The estimate

|{(x , y) ∈ F2
p : (x , x + y , x + 2y , x + y3) ∈ A4}|

= |{(x , y) ∈ F2
p : (x , x + y , x + 2y) ∈ A3}| · |A|/p + O(p2−c)

follows from the following.

Theorem (K., 2019)

For any 1-bounded functions f1, f2, f3, f4 : Fp → C, we have

Ex ,y∈Fp f1(x)f2(x + y)f3(x + 2y)f4(x + y3)

= Ex ,y∈Fp f1(x)f2(x + y)f3(x + 2y) · Ez∈Fp f4(z) + O(p−c),

where the error term does not depend on the choice of functions
f1, f2, f3, f4.
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Discorrelation

One can think of the equality

Ex ,y∈Fp f1(x)f2(x + y)f3(x + 2y)f4(x + y3)

= Ex ,y∈Fp f1(x)f2(x + y)f3(x + 2y) · Ez∈Fp f4(z) + O(p−c),

as a “discorrelation”: up to the error term O(p−c), the term x + y3

is “independent” from the arithmetic progression x , x + y , x + 2y .

The result above (with different absolute constants) remains true if
we replace y3 by any polynomial of degree at least 3. But it fails
for y2 or other quadratic polynomials. Why?
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Why does x , x + y , x + 2y , x + y 2 not work?

Given a polynomial progression

x , x + P1(y), ..., x + Pm−1(y),

one has to understand algebraic relations of the form

Q0(x) + Q1(x + P1(y)) + ...+ Qm−1(x + Pm−1(y)) = 0

for polynomials Q0, ...,Qm−1.

For instance, the terms of x , x + y , x + 2y , x + y3 only satisfy

x − 2(x + y) + (x + 2y) = 0,

and similarly if we replace y3 by any P ∈ Z[y ] with degP > 3.

However, the progression x , x + y , x + 2y , x + y2 also satisfies

(x2 + 2x)− 2(x + y)2 + (x + 2y)2 − 2(x + y2) = 0.

Borys Kuca University of Manchester Counting polynomial configurations in subsets of finite fields



Why does x , x + y , x + 2y , x + y 2 not work?

Let’s see why we care about the algebraic relation

(x2 + 2x)− 2(x + y)2 + (x + 2y)2 − 2(x + y2) = 0.

Taking

f0(t) = ep(t2 + 2t), f1(t) = ep(−2t2), f3(t) = ep(t2), f4(t) = ep(−2t),

and observing that

f0(x)f1(x + y)f2(x + 2y)f3(x + y2)

= ep((x2 + 2x)− 2(x + y)2 + (x + 2y)2 − 2(x + y2)) = 1,

we deduce that

Ex ,y∈Fp f1(x)f2(x + y)f3(x + 2y)f4(x + y3) = 1

but

Ex ,y∈Fp f1(x)f2(x + y)f3(x + 2y)Ez∈Fp f4(z) = 0.
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Algebraic relations as obstruction

Hence discorrelation fails for x , x + y , x + 2y , x + y2.

The example of f1, f2, f3, f4 in the previous slide shows how we can
use algebraic relations like

(x2 + 2x)− 2(x + y)2 + (x + 2y)2 − 2(x + y2) = 0.

to construct counterexamples to discorrelation.

These algebraic relations are the only obstructions.
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How general is the discorrelation equality?

A discorrelation equality

Ex ,y∈Fp

m−1∏
j=0

fj(x + jy)
m+k−1∏
j=m

fj(x + Pj(y))

= Ex ,y∈Fp

m−1∏
j=0

fj(x + jy)

m+k−1∏
j=m

Ex∈Fp fj(x)

 + O(p−c)

holds for any polynomial progression

x , x + y , ..., x + (m − 1)y , x + Pm(y), ..., x + Pm+k(y),

such that
amPm + ...+ am+kPm+k

has degree at least m unless am = ... = am+k = 0.
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How general is the discorrelation equality?

For instance, the discorrelation equality holds for

x , x + y , x + 2y , x + y3, x + y4 + y2,

but it fails for

x , x + y , x + 2y , x + y3, x + y3 + y2

because
(x + y3 + y2)− (x + y3) = y2

has degree 2, and so the algebraic relation

(x2 + 2x)− 2(x + y)2 + (x + 2y)2 + 2(x + y3)− 2(x + y3 + y2) = 0

prevents discorrelation from happening.
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The asymptotic for x , x + y , x + y 2, x + y + y 2

At the end, we shall briefly explain the following equality

|{(x , x + y , x + y2, x + y + y2) ∈ A4}|
= {(x , x + y , x + z , x + y + z) ∈ A4}|/p + o(p2).

The heuristic here is that y2 acts like a separate variable, hence
these two counts are related.

The crucial part is that these two progressions satisfy essentially
the same linear relation

x − (x + y)− (x + y2) + (x + y + y2) = 0

and x − (x + y)− (x + z) + (x + y + z) = 0,

and nothing else.
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The asymptotic for x , x + y , x + y 2, x + y + y 2

You may also wonder why we divide the second expression by p

|{(x , x + y , x + y2, x + y + y2) ∈ A4}|
= |{(x , x + y , x + z , x + y + z) ∈ A4}|/p + o(p2).

The first expression is of order O(p2) (because there are two
parameters x and y) while the second is of order O(p3) (because
there is an additional parameter z), therefore the second expression
is normalized by dividing by p.
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Questions

I will finish by answering some of the questions that you might
have.
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Why do we care?

Question

Why do we care at all about counting such configurations?

First, I think that polynomial progressions are fairly intuitive
objects to study, and understanding how often they appear in
subsets of integers or finite fields seems a natural thing that we
may want to know about them. Second, we can use these counts
to deduce upper bounds for the size of subsets of Fp lacking the
configurations in question.
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Can p be a prime power?

Question

Do the results generalize to Fq, where q is a prime power?

The results for

1 x , x + y , x + y2

2 x , x + y2, x + 2y2

3 x , x + y , x + 2y , x + y3

hold for any prime power q.

The method that I have used for x , x + y , x + y2, x + y + y2 has
only allowed me to prove the results for this configuration over Fp

with p prime. Nevertheless, I do not see an obvious reason for
analogous results to fail over Fq with a prime power q.
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Proving a discorrelation equality

Question

How do you prove a discorrelation equality for
x , x + y , x + 2y , x + y3 and similar progressions?

It is a mix of discrete Fourier analysis, the Cauchy-Schwarz
inequality, popularity principle and a basic theory of Gowers norms.
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Error terms

Question

Why do you have an O(p2−c) error term for some configurations
but o(p2) for another?

The method that I use to prove the result for
x , x + y , x + y2, x + y + y2 relies on nilsequences from so-called
higher order Fourier analysis. Results concerning nilsequences that
I am quoting don’t have reasonable quantitative bounds, hence the
error term is purely qualitative.
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Thank you!

Thank you for your attention! Feel free to contact me with any
questions over email: borys.kuca@manchester.ac.uk
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