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Ramsey numbers

For k ≥ 2, we call a k-uniform hypergraph H a k-graph.

The Ramsey number R(H) is the smallest integer such that each

2-coloring of the edges of K
(k)
R(H) contains a monochromatic copy of H .

Example: R(C4) = 6

Obtaining good estimates on R(H) is notoriously hard.

Classical bounds of Erdős and Szekeres: 2n/2 ≤ R(Kn) ≤ 22n for k = 2.

For k ≥ 3, the Ramsey numbers are much less understood, for example:

2Ω(n2) ≤ R(K (3)
n ) ≤ 22O(n)

.
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Ordered Ramsey numbers

An ordered k-graph H is a pair (H ,≺) where H is a k-graph and ≺ is a
total ordering of its vertices.
(H1,≺1) is ordered subhypergraph of (H2,≺2) if H1 ⊆ H2 and ≺1⊆≺2.

The ordered Ramsey number R(H) of an ordered k-graph H is the

minimum N such that every 2-coloring of the edges of K(k)
N contains a

monochromatic copy of H as an ordered subhypergraph.

Note that R(H) ≤ R(H) ≤ R(K
(k)
|V (H)|) for every H and its ordering H.
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Lower bounds for ordered graphs

Ordered Ramsey numbers for graphs are relatively understood.

They can behave very differently than classical Ramsey numbers.

Theorem 1 (Balko, Cibulka, Kynčl, Král, 2015)

There are arbitrarily large ordered matchings Mn on n vertices such that

R(Mn) ≥ nΩ( log n
log log n).

True for almost every ordered matching (Conlon, Fox, Lee, Sudakov).

To obtain a polynomial upper bound on R(G) we need to bound another
parameter besides the maximum degree.
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There are arbitrarily large ordered matchings Mn on n vertices such that

R(Mn) ≥ nΩ( log n
log log n).

True for almost every ordered matching (Conlon, Fox, Lee, Sudakov).

To obtain a polynomial upper bound on R(G) we need to bound another
parameter besides the maximum degree.



Lower bounds for ordered graphs

Ordered Ramsey numbers for graphs are relatively understood.

They can behave very differently than classical Ramsey numbers.

Theorem 1 (Balko, Cibulka, Kynčl, Král, 2015)
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Upper bounds for ordered graphs

The interval chromatic number χ≺(G ) of (G ,≺) is the minimum
number of intervals V (G ) can be partitioned into so that no two
adjacent vertices are in the same interval.

Theorem 2 (Balko, Cibulka, Kynčl, Král, 2015)

For all k and p every k-degenerate ordered graph G = (G ,≺) with n vertices
and χ≺(G ) = p satisfies

R(G) ≤ nO(k)log p

.

Stronger bound: R(G) ≤ nO(k log p) (Conlon, Fox, Lee, and Sudakov).
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Ordered hypergraphs

What can we say about ordered k-graphs with k ≥ 3?

Not much. We focus on k = 3.

For H with bounded maximum degree, R(H) can be exponential.

Theorem 3 (Moshkovitz and Shapira, 2014)

For every n,

R(P(3)
n ) =

(
2n − 4

n − 2

)
+ 1.

P3
7

Theorem 4 (follows from a result of Conlon, Fox, and Sudakov, 2011)

Every ordered 3-graph H with n vertices and with bounded interval
chromatic number satisfies R(H) ≤ 2O(n2).

This is tight for dense ordered 3-graphs.
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Our results I

We considered ordered 3-graphs with bounded maximum degree and
interval chromatic number 3.

Theorem 5

Let H be an ordered 3-graph on n vertices with maximum degree d and with
interval chromatic number 3. Then there exists an ε = ε(d) > 0 such that

R(H) ≤ 2O(n2−ε).

In fact, we can prove the following stronger bound.

Theorem 6

Let H be an ordered 3-graph on n vertices with maximum degree d . Then
there exists an ε = ε(d) > 0 such that

R(H,K(3)
n,n,n) ≤ 2O(n2−ε).
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Our results II

This upper bound is quite close to the truth.

Theorem 7

For every t ≥ 4 and every n ∈ N, there is an ordered 3-graph H on t vertices
such that

R(H,K(3)
n,n,n) ≥ 2Ω(n log n).

The case k > 3 remains unexplored, but we can prove the following
bound, which shows that bounding the interval chromatic number
prevents tower-type lower bounds.

Proposition 8

Let χ, k be integers with χ ≥ k ≥ 2 and let H be an ordered k-graph on n
vertices with interval chromatic number χ. Then there is a constant
c = c(χ) such that

R(H) ≤ 2c(nχ−1).
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Open problems

Plenty of open problems:

Close the gap between the exponents Ω(n log n) and O(n2−ε) in the

bounds on R(H,K(3)
n,n,n).

Extend our bounds on R(H) to ordered 3-graphs H with bounded
maximum degree and with interval chromatic number χ > 3.

Are there ordered 3-graphs H of bounded maximum degree with
superexponential R(H)?

Thank you.
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