On ordered Ramsey numbers of
tripartite 3-uniform hypergraphs

Martin Balko and Maté Vizer

Alfréd Rényi Institute of Mathematics
Budapest, Hungary

14-18 September 2020
8th Polish Combinatorial Conference
(online)



Ramsey numbers



Ramsey numbers

e For k > 2, we call a k-uniform hypergraph H a k-graph.



Ramsey numbers

e For k > 2, we call a k-uniform hypergraph H a k-graph.
e The Ramsey number R(H) is the smallest integer such that each
2-coloring of the edges of K,gl((,L) contains a monochromatic copy of H.



Ramsey numbers

e For k > 2, we call a k-uniform hypergraph H a k-graph.
e The Ramsey number R(H) is the smallest integer such that each
2-coloring of the edges of K,gIEL) contains a monochromatic copy of H.

Example: R(C4) =6



Ramsey numbers

e For k > 2, we call a k-uniform hypergraph H a k-graph.
e The Ramsey number R(H) is the smallest integer such that each
2-coloring of the edges of K,gl((,l,) contains a monochromatic copy of H.

Example: R(C4) =6

e Obtaining good estimates on R(H) is notoriously hard.



Ramsey numbers

e For k > 2, we call a k-uniform hypergraph H a k-graph.
e The Ramsey number R(H) is the smallest integer such that each
2-coloring of the edges of K,gl((,l,) contains a monochromatic copy of H.

Example: R(C4) =6

e Obtaining good estimates on R(H) is notoriously hard.
o Classical bounds of Erdds and Szekeres: 272 < R(K,) < 22" for k = 2.



Ramsey numbers

e For k > 2, we call a k-uniform hypergraph H a k-graph.
e The Ramsey number R(H) is the smallest integer such that each
2-coloring of the edges of K,gl((,L) contains a monochromatic copy of H.

Example: R(C4) =6

e Obtaining good estimates on R(H) is notoriously hard.
o Classical bounds of Erdds and Szekeres: 272 < R(K,) < 22" for k = 2.
e For k > 3, the Ramsey numbers are much less understood, for example:

29(,,2) S R(KIS?’)) S 220(n)'
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o The ordered Ramsey number R(#) of an ordered k-graph # is the

minimum /N such that every 2-coloring of the edges of IC%() contains a
monochromatic copy of H as an ordered subhypergraph.

e Note that R(H) < R(H) < R(K‘V(H)‘) for every H and its ordering .

@Am@

R(Ca) =10 R(Cg) = 11 R(Cc) =14
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Lower bounds for ordered graphs

e Ordered Ramsey numbers for graphs are relatively understood.
@ They can behave very differently than classical Ramsey numbers.

Theorem 1 (Balko, Cibulka, Kyn¢l, Kral, 2015)
There are arbitrarily large ordered matchings M, on n vertices such that

R(M,) > nmsien).

e True for almost every ordered matching (Conlon, Fox, Lee, Sudakov).

e To obtain a polynomial upper bound on R(G) we need to bound another
parameter besides the maximum degree.
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Upper bounds for ordered graphs

e The interval chromatic number y-(G) of (G, <) is the minimum
number of intervals V(G) can be partitioned into so that no two
adjacent vertices are in the same interval.

X<mix(Pn) = 2

X<man(Pn) =n
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Theorem 2 (Balko, Cibulka, Kyn¢l, Kral, 2015)

For all k and p every k-degenerate ordered graph G = (G, <) with n vertices
and x<(G) = p satisfies

R(G) < no®™”

e Stronger bound: R(G) < n®(1°&P) (Conlon, Fox, Lee, and Sudakov).
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Ordered hypergraphs

e What can we say about ordered k-graphs with k > 37
e Not much. We focus on k = 3.

o For 7{ with bounded maximum degree, R(#) can be exponential.

Theorem 3 (Moshkovitz and Shapira, 2014)

For every n,
— 2n — 4
R(PB) = 1.
P =(72,)+

" CCOODD D

Theorem 4 (follows from a result of Conlon, Fox, and Sudakov, 2011)

Every ordered 3-graph H with n vertices and with bounded interval
chromatic number satisfies R(#) < 2°(").

e This is tight for dense ordered 3-graphs.
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e We considered ordered 3-graphs with bounded maximum degree and
interval chromatic number 3.

Theorem 5

Let # be an ordered 3-graph on n vertices with maximum degree d and with
interval chromatic number 3. Then there exists an ¢ = £(d) > 0 such that

R(H) < 2007,

e In fact, we can prove the following stronger bound.
Theorem 6

Let H be an ordered 3-graph on n vertices with maximum degree d. Then
there exists an ¢ = ¢(d) > 0 such that

R(H,K®) ) <200,

n,n,
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e This upper bound is quite close to the truth.

Theorem 7

For every t > 4 and every n € N, there is an ordered 3-graph 7 on t vertices
such that
E(H, ’C(3r)7 n) > 2Q(n|ogn)'

n,n,

@ The case k > 3 remains unexplored, but we can prove the following
bound, which shows that bounding the interval chromatic number
prevents tower-type lower bounds.

Proposition 8
Let x, k be integers with x > k > 2 and let H be an ordered k-graph on n

vertices with interval chromatic number x. Then there is a constant
¢ = ¢(x) such that

E(H) < 2C(nX71)'
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Open problems

e Plenty of open problems:
o Close the gap between the exponents Q(nlog n) and O(n*~¢) in the
bounds on R(H, ICSF,),,,)

o Extend our bounds on R(#) to ordered 3-graphs H with bounded
maximum degree and with interval chromatic number y > 3.

o Are there ordered 3-graphs H of bounded maximum degree with
superexponential R(H)?

Thank you.



