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Approximate regularity of G(n, p)

I Random graph G(n, p): vertices 1, . . . , n, each edge included
independently with probability p.

I We assume n→∞, allow p = p(n)
I Easy fact: if np� logn, all degrees of G(n, p) are w.h.p.

(1 + o(1))np
I Why? Since deg(v) ∼ Bin(n− 1, p), for small constant ε > 0

Pr(∃v : | deg(v)− np| > εnp) ≤ n exp{−Ω(ε2np)}
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The maximum degree of G(n, p)
I For G ∼ G(n, p),

µ := E degG(v) ∼ pn, σ2 := Var degG(v) ∼ p(1− p)n

Easy fact: if µ� logn

maxv degG(v)
µ

p−→ 1

I More precise: [Bollobás ’80] for σ2 � (logn)3

maxv∈[n] degG(v)− µ
σ
√

2 logn
p−→ 1.

I Intuition: degG(v) ≈ Z ∼ N (µ, σ2) and standard estimate

Pr (Z ≥ µ+ xσ) = exp
(
−x

2

2 (1 + o(1))
)
, x→∞.
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Generalization of vertex degrees: extension counts

I Rooted graph H: a graph H with a distinguished root v ∈ V (H)

v

I H-Extension of x ∈ V (G) is a copy of H with v 7→ x.

x
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Extension counts in random graphs

I XH(x) = number of H-extensions of vertex x in G(n, p)
I Examples:

H = K2 rooted at one end:
XH(x) = deg(x) H = K3: XH(x) = number of

triangles containing x
I Extends to graphs rooted on more vertices
I For example: if H = ,

then XH(u, v) = number of common neighbours of u and v.
I For simplicity here we restrict to the case of a single root
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Strictly balanced rooted graphs

I For some rooted graphs µH := EXH(1)→ λ ∈ (0,∞) implies

XH(1) d−→Poisson(λ)

I Can be characterized structurally: vaguely, H has no ‘dense
rooted subgraphs’, such H we call strictly balanced

I Strictly balanced includes cycles and cliques rooted on a vertex
I Does not include trees (other than one edge)
I Example of non-Poisson limit: H = , np→ c ∈ (0,∞)

then

XH(1) d−→
N∑
i=1

Xi,

where N,X1, X2, . . . are i.i.d. Poisson(c).
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Extension count concentration: strictly balanced graphs

Let H be strictly balanced, root v not isolated

Theorem (Spencer 1990)

maxx∈[n] |XH(x)− µH |
µH

p−→ 0, n→∞,

whenever µH � logn.

So maximal deviations are o(µH). But what order precisely?

Theorem (Šileikis & Warnke 2019+)
If root is not isolated in H , there exist c, C, α > 0 such that

Pr
(

max
x∈[n]

|XH(x)− µH | ∈ [c
√
µH logn,C

√
µH logn]

)
→ 1

provided 1� µH ≤ nα.
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Theorem (Šileikis & Warnke 2019+)
If H is strictly balanced and root is not isolated, there exist
c, C, α > 0 such that

Pr
(

max
x∈[n]

|XH(x)− µH | ∈ [c
√
µH logn,C

√
µH logn]

)
→ 1

provided 1� µH ≤ nα.

I In this range σ2
H := VarXH ∼ µH . Moral: maximal deviation

of extension counts is Θ(
√

logn) standard deviations
I For larger µH can have σ2

H � µH .

Conjecture
For H as above exist constants c, C > 0 such that for µH � 1, p ≤ 1

2

Pr
(

max
x∈[n]

|XH(x)− µH | ∈ [cσH
√

logn,CσH
√

logn
)
→ 1,
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What we know for general H
I Recall σH :=

√
VarXH

I Suppose p is such that XH(1) ≥ 1 whp and p = 1− Ω(1)
Theorem (Šileikis & Warnke 2019+)
For arbitrary sequences an = o(1) and bn = nΩ(1)

Pr
(

maxx∈[n] |XH(x)− µH |
σH

∈ [an, bn]
)
→ 1

I Conjecture: if H is strictly balanced and root not isolated
we can take an � bn �

√
logn

I There exist H such that arbitrary bn →∞ suffices
I There exist H such that bn �

√
logn is necessary

Problem
For which graphs can we take bn � an? In that case, how does it
depend on n and p?
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