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Zero-Error Communication

A code (over alphabet {0, 1} of length n) is a non-empty
subset of {0, 1}n.

Words from the code are sent over a channel (that may
change them)...

Zero-error code for a channel is a code with error probability
equal to zero (under optimal decoding).

⇐⇒ No two codewords can produce the same output.

Zero-error capacity of a channel, denoted C0, is the largest
rate achievable with zero-error codes:

If M(n) is the size of the largest zero-error code of length n for
a given channel, then

C0 = lim sup
n→∞

1

n
logM(n).

C. E. Shannon, “The Zero Error Capacity of a Noisy Channel”, IRE Trans. Inf.

Theory 2 (3), 1956.
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Zero-Error Communication

Example: The binary erasure channel (BEC)
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Observation: No matter which codeword is sent, the sequence
EE · · ·E can be received with positive probability.

Every two codewords are confusable =⇒ the zero-error
capacity of the BEC is equal to zero.
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Zero-Error Communication

Another example:
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Now, since the symbols 0 and 2 are not confusable, we can
use only them and communicate error-free.

We can transmit one bit per channel use in this way.
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Zero-Error Communication

We can do better by looking at sequences of length two:

00, 12, 24, 31, and 43 are non-confusable.

The rate of this code is 1
2 log 5 = log

√
5.

It turns out that this is the maximal possible rate, i.e., the
zero-error capacity of this channel.

L. Lovasz, “On the Shannon Capacity of a Graph”, IEEE Trans. Inf.

Theory 25 (1), 1979.
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The Shift Channel

Units of transmission: packets

The basic model:

1) Time is slotted, meaning that the packets are sent and
received in integer time instants;

2) At most 1 packet is sent/received in each time slot;

3) Every packet is delayed in the channel for a number of slots
chosen from the set {0, 1, . . . ,K} (say, randomly);

4) The packets are indistinguishable, and hence the information is
conveyed via timing only.
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The Shift Channel: Comments

This model is equivalent to a discrete-time queue with
bounded residence times.

V. Anantharam and S. Verdu, “Bits Through Queues,”

IEEE Trans. Inf. Theory 42 (1), 1996.

If the duration of transmission is n slots, the transmitted
sequence of packets can be identified with a binary sequence
from {0, 1}n.
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The Shift Channel: Comments

In channels with delays, packets from one codeword can
interfere with the following codeword.

Example: Let C = {000, 001, 100} and K = 1

No two codewords can produce the same sequence at the
output.

However, 001000 000100 and so the sequences of
codewords 001, 000 and 000, 100 are confusable.

We need to redefine the notion of zero-error code:

A code is said to be zero-error if no two sequences of
codewords can produce the same output.
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The Shift Channel: Comments

The previous problem can be circumvented by padding each
codeword with K zeros, i.e., empty slots.

Empty slots at the end of each codeword serve to “catch” the
packets that are sent in the preceding slots and are delayed in
the channel.

Restricting to these codes is not a loss in generality (K is a
constant):

lim
n→∞

1

n
log |C(n)| = lim

n→∞

1

n + K
log |C(n)|.
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Optimal zero-error codes

Observation: The Shift Channel does not affect the Hamming
weight of the transmitted codeword.

Each constant-weight case can be observed separately.

Sequences of length n and weight W can be represented as
W -tuples of integers (p1, . . . , pW ), where pi is the position of
the i ’th 1 in the sequence.

10010←→ (1, 4)

Example: n = 9, W = 2, K = 1 – Let’s try to construct a
good code!
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Optimal zero-error codes: Constant-weight case

Thm. Optimal code of length n and weight W is given by

C(n,W ) =
{

x ∈ ∆W
n−W : x = 0 (mod K + 1)

}
.

The size of the optimal constant-weight code is therefore

M(n,W ) =

(⌊n−W
K+1

⌋
+ W

W

)
,

M(n) =
n∑

W=0

M(n,W ).
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Zero-error capacity

Since we proved the constructed codes are optimal, the
zero-error capacity is equal to

C0 = lim
n→∞

1

n
logM(n)

Theorem

The zero-error capacity of the Shift Channel with parameter K
is equal to log r , where r is the unique positive real root of the
polynomial xK+1 − xK − 1.



Zero-error capacity

Since we proved the constructed codes are optimal, the
zero-error capacity is equal to

C0 = lim
n→∞

1

n
logM(n)

Theorem

The zero-error capacity of the Shift Channel with parameter K
is equal to log r , where r is the unique positive real root of the
polynomial xK+1 − xK − 1.



Zero-error capacity

Since we proved the constructed codes are optimal, the
zero-error capacity is equal to

C0 = lim
n→∞

1

n
logM(n)

Theorem

The zero-error capacity of the Shift Channel with parameter K
is equal to log r , where r is the unique positive real root of the
polynomial xK+1 − xK − 1.



Zero-error capacity

Proof:

Turns out M(n) can also be described recursively

M(n) = M(n − 1) + M(n − K − 1),

with M(n) = n + 1 for n ≤ K .

This implies that

M(n) =
K∑

k=0

ak r
n
k ,

where rk are the roots of the polynomial xK+1 − xK − 1, and
ak are (complex) constants.

Therefore, M(n) ∼ arn, where r is the largest of these roots
(which is the unique positive real root). �



Zero-error capacity: Constant-weight case

We can find the constant-weight zero-error capacity

(i.e. the
largest rate attainable with the requirement that the ω
fraction of the slots is used):

C0(ω) = lim
n→∞

1

n
logM(n, ωn) =

ωK + 1

K + 1
H
(
ω(K + 1)

ωK + 1

)
.

As there are linearly many different weights, the zero-error
capacity can be achieved with constant-weight codes, so

C0 = max
ω∈[0,1]

C0(ω) =
ω∗K + 1

K + 1
H
(
ω∗(K + 1)

ω∗K + 1

)
,

for some ω∗.
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Note: Even though the capacity can be achieved with
constant-weight codes, their performance is worse at finite
blocklengths.

...quantified by the second-order term − 1
2n log n
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Generalizations

P types of packets; the delay of each packet is at most K , as
before, and the packets cannot be reordered (queue with a
FIFO service procedure).

Now the packets themselves also carry information.

Main observation: We can first design the “timing” code
(P = 1), and then assign to every such codeword of weight W
all possible sequences of packets (PW of them)

P = 2: 10010 −→ A00A0,A00B0,B00A0,B00B0

This construction is optimal.

Zero-error capacity is equal to log r , where r is the unique
positive real root of the polynomial xK+1 − PxK − 1.
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Generalizations

Allowed shifts from {−K1, . . . , 0, . . . ,K2}

Equivalent to shifts belonging to {0, . . . ,K1 + K2}

Continuous-time channel with emissions separated by at least
τ seconds, and with the maximum delay of T seconds

The capacity equals 1
τ log r , where r is the unique positive root

of the polynomial xT/τ − xT/τ−1 − 1
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Zero-error-detecting codes

Zero-error-detecting code is a code which can detect all errors
(in our case shifts) allowed in the model. (We do not need to
figure out what was sent.)

No codeword can produce another codeword at the output.

Zero-error-detection capacity of a channel is the largest rate
achievable (asymptotically) with zero-error-detecting codes.
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Zero-error-detecting codes: Construction

The shifts are now assumed to be ∈ {−K1, . . . , 0, . . . ,K2}

Suppose also w.l.o.g. that K1 ≤ K2

Code construction:

D(a)(n,W ) =

{
x ∈ ∆W

n−W : x = 0 (mod K1 + 1),

W∑
i=1

xi = a (mod WK2 + 1)

}
.

This code is a subcode of C(n,W ) obtained as its intersection

with the hyperplanes
∑W

i=1 xi = a (mod WK2 + 1)
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Zero-error-detection capacity

Theorem

The zero-error-detection capacity of the Shift Channel with
parameters K1, K2, is equal to log r , where r is the unique positive
real root of the polynomial xmin{K1,K2}+1 − xmin{K1,K2} − 1.

...which is the same as the zero-error-correction capacity of
the Shift Channel with parameters 0, min{K1,K2}.
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Discrete-time queues: Model description

DTQP—Discrete-Time Queue with bounded Processing times

The model:

1) Time is slotted, meaning that the packets are sent and
received in integer time instants;

2) At most 1 packet is sent in each time slot;

3) Every packet is being processed by the server for a number of
slots chosen randomly from the set {0, 1, . . . ,K};

4) The packets are indistinguishable, and hence the information is
conveyed via timing only.
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Discrete-time queues: Comments

The total delay of a packet can now be much larger, because
it has to wait for the other packets that arrived before it to be
processed.

The received sequence can be as long as (K + 1)n
(longer than the input by a multiplicative constant!)...

We have to incorporate this fact in the definition of the code
rate:

1

Lav(n)
logM(n),

where Lav(n) is the average output length (over all codewords
and channel statistics).

Etc.
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