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C. E. Shannon, “The Zero Error Capacity of a Noisy Channel”, IRE Trans. Inf.
Theory 2 (3), 1956.
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Zero-Error Communication

e Example: The binary erasure channel (BEC)

@ Observation: No matter which codeword is sent, the sequence
EE - - - E can be received with positive probability.

o Every two codewords are confusable = the zero-error
capacity of the BEC is equal to zero.
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Zero-Error Communication

@ Another example:

A W N o w, O
A W N, O

@ Now, since the symbols 0 and 2 are not confusable, we can
use only them and communicate error-free.

o We can transmit one bit per channel use in this way.
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Zero-Error Communication

@ We can do better by looking at sequences of length two:

e 00, 12, 24, 31, and 43 are non-confusable.
e The rate of this code is % log 5 = log /5.

@ It turns out that this is the maximal possible rate, i.e., the
zero-error capacity of this channel.

L. Lovasz, “On the Shannon Capacity of a Graph”, IEEE Trans. Inf.
Theory 25 (1), 1979.
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The Shift Channel

@ Units of transmission: packets

@ The basic model:
1) Time is slotted, meaning that the packets are sent and
received in integer time instants;
2) At most 1 packet is sent/received in each time slot;

3) Every packet is delayed in the channel for a number of slots
chosen from the set {0,1,..., K} (say, randomly);

4) The packets are indistinguishable, and hence the information is
conveyed via timing only.
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@ In channels with delays, packets from one codeword can
interfere with the following codeword.

e Example: Let C = {000,001,100} and K =1

e No two codewords can produce the same sequence at the
output.

e However, 001000 ~~ 000100 and so the sequences of
codewords 001,000 and 000, 100 are confusable.

@ We need to redefine the notion of zero-error code:

e A code is said to be zero-error if no two sequences of
codewords can produce the same output.
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The Shift Channel: Comments

@ The previous problem can be circumvented by padding each
codeword with K zeros, i.e., empty slots.

e Empty slots at the end of each codeword serve to “catch” the
packets that are sent in the preceding slots and are delayed in
the channel.

@ Restricting to these codes is not a loss in generality (K is a
constant):

lim 1Iog|C’(n)| = lim !

n—oo n n—oon+ K

log |C(n)|.
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Optimal zero-error codes

@ Observation: The Shift Channel does not affect the Hamming
weight of the transmitted codeword.

e Each constant-weight case can be observed separately.
@ Sequences of length n and weight W can be represented as

W-tuples of integers (pi, ..., pw), where p; is the position of
the i'th 1 in the sequence.

e 10010 +— (1,4)

@ Example: n=9, W =2, K =1 - Let's try to construct a
good code!
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Thm. Optimal code of length n and weight W is given by

C(n, W) = {XEA,V::W : x=0 (mod K+1)}.

@ The size of the optimal constant-weight code is therefore

M(n, W) = <LK+1MJ/+ W>,
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@ Since we proved the constructed codes are optimal, the
zero-error capacity is equal to

1
Co = lim =log M(n)

n—oo N

The zero-error capacity of the Shift Channel with parameter K
is equal to log r, where r is the unique positive real root of the

K+1 K—].

polynomial x X




Zero-error capacity

Proof:
e Turns out M(n) can also be described recursively
M(n) = M(n—1)+ M(n— K —1),
with M(n) = n+1 for n < K.
e This implies that

K
M(n) = Z ary,
k=0

where r are the roots of the polynomial xX*1 — xK — 1, and
ay are (complex) constants.

o Therefore, M(n) ~ ar”, where r is the largest of these roots
(which is the unique positive real root). O
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Zero-error capacity: Constant-weight case

@ We can find the constant-weight zero-error capacity (i.e. the
largest rate attainable with the requirement that the w
fraction of the slots is used):

Co(w) = lim E log M(n,wn) =

wK+1,H w(K+1)
n—oo N K+1 )

wK+1

@ As there are linearly many different weights, the zero-error
capacity can be achieved with constant-weight codes, so

WK+ 1 <w*(K+ 1)) |

Co = max G(w) = K11

weo,1] K+1

for some w*.
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Zero-error capacity: Constant-weight case

@ We can estimate this function further:

1 1 1
;IogM(n,w*n): Co2n|ogn+(9< )

n
@ Note: Even though the capacity can be achieved with
constant-weight codes, their performance is worse at finite

blocklengths.

o ...quantified by the second-order term —5- log n
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Generalizations

@ P types of packets; the delay of each packet is at most K, as
before, and the packets cannot be reordered (queue with a
FIFO service procedure).

e Now the packets themselves also carry information.

Main observation: We can first design the “timing” code
(P = 1), and then assign to every such codeword of weight W

all possible sequences of packets (P" of them)
e P=2: 10010 — A00A0, AO0BO, BOOAO, BO0OBO
e This construction is optimal.

e Zero-error capacity is equal to log r, where r is the unique
positive real root of the polynomial xX+1 — PxX — 1.
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Generalizations

o Allowed shifts from {—Kj,...,0,..., K>}

e Equivalent to shifts belonging to {0, ..., Ki + K>}

@ Continuous-time channel with emissions separated by at least
T seconds, and with the maximum delay of T seconds

o The capacity equals % log r, where r is the unique positive root
of the polynomial x7/7 — xT/7=1 _1
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Zero-error-detecting codes

@ Zero-error-detecting code is a code which can detect all errors
(in our case shifts) allowed in the model. (We do not need to
figure out what was sent.)

e No codeword can produce another codeword at the output.

@ Zero-error-detection capacity of a channel is the largest rate
achievable (asymptotically) with zero-error-detecting codes.
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Zero-error-detecting codes: Construction

@ The shifts are now assumed to be € {—Ki,...,0,..., K>}
e Suppose also w.l.o.g. that K; < K5

@ Code construction:

D@ (n, W) = {x €A, :x=0 (mod Ky +1),

w
> xi=a (mod WK+ 1)}.

i=1

e This code is a subcode of C(n, W) obtained as its intersection
with the hyperplanes Z,Vil x; =a (mod WK, +1)
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Zero-error-detection capacity

The zero-error-detection capacity of the Shift Channel with
parameters K1, Ky, is equal to log r, where r is the unique positive
real root of the polynomial x™MKLK}+1 _ ymin{Ki, Ko} _ 7,

@ ...which is the same as the zero-error-correction capacity of
the Shift Channel with parameters 0, min{ K1, K2}.
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Discrete-time queues: Comments

@ The total delay of a packet can now be much larger, because
it has to wait for the other packets that arrived before it to be
processed.

@ The received sequence can be as long as (K + 1)n
(longer than the input by a multiplicative constant!)...

@ We have to incorporate this fact in the definition of the code
rate:

1
() log M(n),

where L,,(n) is the average output length (over all codewords

and channel statistics).
e Etc.
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— the end —
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