Amarja Kathapurkar

University of Birmingham

Removing induced even cycles from A graph

What is the minimum proportion of edges which must be added to or removed from a graph of density p to eliminate all induced cycles of length h? The maximum of this quantity over all graphs of density p is measured by the edit distance function, $\operatorname{ed}_{\operatorname{Forb}(C_h)}(p)$, a function which provides a natural metric between graphs and hereditary properties.

Martin and Peck determined $\operatorname{ed}_{\operatorname{Forb}(C_h)}(p)$ for all p for odd cycles, and for $p \geq 1/\lceil h/3 \rceil$ for even cycles. We improve on this result for even cycles by determining $\operatorname{ed}_{\operatorname{Forb}(C_h)}(p)$ for all $p \geq p_0$, where $p_0 \leq c/h^2$, for some constant c. More generally, if C_h^t is the *t*-th power of the cycle C_h , we determine $\operatorname{ed}_{\operatorname{Forb}(C_h^t)}(p)$ for all $p \geq p_0$ in the case when $(t+1) \mid h$, thus improving on earlier work of Berikkyzy, Martin, and Peck.

This is joint work with Richard Mycroft.