Balázs Patkós

Alfréd Rényi Institute of Mathematics

STABILITY OF EXTREMAL CONNECTED HYPERGRAPHS AVOIDING BERGE-PATHS

A Berge-path of length k in a hypergraph \mathcal{H} is a sequence

$v_1, e_1, v_2, e_2, \ldots, v_k, e_k, v_{k+1}$

of distinct vertices and hyperedges with $v_{i+1} \in e_i, e_{i+1}$ for all $i \in [k]$. Füredi, Kostochka and Luo, and independently Győri, Salia and Zamora determined the maximum number of hyperedges in an *n*-vertex, connected, *r*-uniform hypergraph that does not contain a Berge-path of length k provided k is large enough compared to r. They also determined the unique extremal hypergraph \mathcal{H}_1 .

We prove a stability version of this result by presenting another construction \mathcal{H}_2 and showing that any *n*-vertex, connected, *r*-uniform hypergraph without a Berge-path of length k, that contains more than $|\mathcal{H}_2|$ hyperedges must be a subhypergraph of the extremal hypergraph \mathcal{H}_1 , provided k is large enough compared to r.

This is joint work with Dániel Gerbner, Dániel Nagy, Nika Salia, and Máté Vizer.