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graphs

Given two graphs G and F , a spanning subgraph H ⊂ G is called a
weakly F -saturated subgraph of G, if it contains no subgraph isomorphic to
F and there exists a sequence of graphs H = H0 ⊂ H1 ⊂ . . . ⊂ Hm = G
such that, for every i ∈ {1, . . . ,m}, Hi is obtained from Hi−1 by adding an
edge that belongs to a copy of F in Hi. The minimum number of edges in a
weakly F -saturated subgraph of G is called weak F -saturation number of G
and denoted by wsat(G,F ).

We consider complete bipartite F = Ks,t, s ≤ t. For arbitrary s and t,
the exact value of wsat(Kn, Ks,t) is not known. However, it is easy to show
that wsat(Kn, K1,t) =

(
t
2

)
. Recently [1], it was proven that

wsat(Kn, Kt,t) = (t− 1)(n+ 1− t/2)

for n ≥ 3t− 3 and

wsat(Kn, Kt−1,t) = (t− 2)(n+ 1− (t− 1)/2) + 1

for n ≥ 3t − 6. We have proven that, in all the above cases, the weak
saturation number is stable, i.e. with high probability wsat(G(n, p), Ks,t) =
wsat(Kn, Ks,t), where G(n, p) is the binomial random graph with constant
edge probability p. Moreover, we have shown that there exists C > 0 such
that, for s = 1, the stability property holds true for every

p ≥ C(n[lnn]t−2)−1/(t−1).

This result is sharp: there exists c > 0 such that, for p ≤ c(n[lnn]t−2)−1/(t−1),
with high probability wsat(G(n, p), K1,t) does not equal to wsat(Kn, K1,t).
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