Małgorzata Sulkowska

Wrocław University of Science and Technology

Maximizing the expected number of components in An online search of a graph

The following optimal stopping problem is considered. The vertices of a graph G are revealed one by one, in a random order, to a selector. He aims to stop this process at a time t that maximizes the expected number of connected components in the graph \tilde{G}_t , induced by the currently revealed vertices. The selector knows G in advance, but different versions of the game are considered depending on the information that he gets about \tilde{G}_t . We show that when G has N vertices and maximum degree of order $o(\sqrt{N})$, then the number of components of \tilde{G}_t is concentrated around its mean, which implies that playing the optimal strategy the selector does not benefit much by receiving more information about \tilde{G}_t . Results of similar nature were previously obtained by M. Lason for the case where G is a k-tree (for constant k). We also consider the particular cases where G is a square, triangular or hexagonal lattice, showing that an optimal selector gains cN components and we compute c with an error less than 0.005 in each case.

This is joint work with Fabrício Siqueira Benevides.