Marta Piecyk

Warsaw University of Technology

LIST HOMOMORPHISM PROBLEM PARAMETERIZED BY CUTWIDTH

A homomorphism from a graph G to a graph H is a mapping $\varphi : V(G) \to V(H)$ such that for every edge uv in G it holds that $\varphi(u)\varphi(v) \in E(H)$. For a fixed graph H, in the homomorphism problem, denoted by $\operatorname{HOM}(H)$, we are given a graph G and we ask whether there exists a homomorphism from G to H. In the list homomorphism problem, denoted by $\operatorname{LHOM}(H)$, the graph G is given together with lists L, where for every $v \in V(G)$, the list L(v) is a subset of V(H). We ask whether there exists a homomorphism φ from G to H, which additionally respects the lists, i.e., for every $v \in V(G)$, it holds that $\varphi(v) \in L(v)$. Note that if $H \simeq K_k$, then $\operatorname{HOM}(H)$ is equivalent to k-COLORING and $\operatorname{LHOM}(H)$ is equivalent to LIST-k-COLORING.

We study the complexity of LHOM(H) parameterized by the cutwidth $\operatorname{ctw}(G)$. Jansen and Nederlof [1] provided an algorithm solving k-COLORING in time $c^{\operatorname{ctw}(G)} \cdot |V(G)|^{\mathcal{O}(1)}$, where c is a constant that does not depend on k. Jansen asked if the same is possible for $\operatorname{HOM}(H)$, i.e., if there exists a constant c such that for every H, the $\operatorname{HOM}(H)$ problem can be solved in time $c^{\operatorname{ctw}(G)} \cdot |V(G)|^{\mathcal{O}(1)}$. We introduce an invariant, $\min^*(H)$, and we show that for every relevant H, the LHOM(H) problem cannot be solved in time $(\min^*(H) - \varepsilon)^{\operatorname{ctw}(G)} \cdot |V(G)|^{\mathcal{O}(1)}$ for any $\varepsilon > 0$, unless the SETH fails. We also provide similar lower bound assuming the ETH, and we use this result to answer the question of Jansen – we prove that there is no constant c such that for every H, the HOM(H) problem can be solved in time $c^{\operatorname{ctw}(G)} \cdot |V(G)|^{\mathcal{O}(1)}$ for every H, the HOM(H) problem can be solved in time $c^{\operatorname{ctw}(G)} \cdot |V(G)|^{\mathcal{O}(1)}$ for every H, the HOM(H) problem can be solved in time $c^{\operatorname{ctw}(G)} \cdot |V(G)|^{\mathcal{O}(1)}$ for every H, the HOM(H) problem can be solved in time $c^{\operatorname{ctw}(G)} \cdot |V(G)|^{\mathcal{O}(1)}$ for every H, the HOM(H) problem can be solved in time $c^{\operatorname{ctw}(G)} \cdot |V(G)|^{\mathcal{O}(1)}$ for every instance G, unless the ETH fails.

This is joint work with Paweł Rzążewski.

References

 Bart M. P. Jansen and Jesper Nederlof, Computing the chromatic number using graph decompositions via matrix rank, Theoretical Computer Science, 795, 2019, pp. 520-539.