# Wiam Belkouche 

Hassan II University of Casablanca

## On a problem of Frankl and Füredi

In this talk, we address the following problem due to Frankl and Füredi [2]. What is the maximum number of hyperedges in an $r$-uniform hypergraph with $n$ vertices, such that every set of $r+1$ vertices contains 0 or 2 hyperedges? They solved this problem for $r=3$. For $r=4$, a partial solution is given by Gunderson and Semeraro [3] when $n=q+1$ for some prime power $q \equiv 3$ $(\bmod 4)$. Assuming the existence of skew-symmetric conference matrices for every order divisible by 4 , based on our results in [1], we give a solution for $n \equiv 0(\bmod 4)$ and for $n \equiv 3(\bmod 4)$. This problem is linked to the question of determining the maximum number of diamonds in a tournament.

This is joint work with Abderrahim Boussaïri, Soufiane Lakhlifi and Mohammed Zaidi.

## References

[1] W. Belkouche, A. Boussaïri, S. Lakhlifi, and M. Zaidi, Matricial characterization of tournaments with maximum number of diamonds, Discrete Mathematics, 343(4), 2020, p. 111699.
[2] P. Frankl, Z. Füredi, An exact result for 3-graphs, Discrete Mathematics, 50, 1984, pp. 323-328.
[3] K. Gunderson and J. Semeraro, Tournaments, 4-uniform hypergraphs, and an exact extremal result, Journal of Combinatorial Theory B, 126, 2017, p. 125.

