# Yury Yarovikov <br> Moscow Institute of Physics and Technology 

## Spectra of first-order SEntences with quantifier DEPTH 4

We study asymptotic behaviour of the first order properties (properties expressible in first order logic) of binomial random graphs $G(n, p)$. We say that the random graph $G(n, p)$ obeys the Zero-One $k$-Law if for each firstorder graph property with quantifier depth no more than $k$, its probability tends to 0 or tends to 1 .

We say that $\alpha \in(0,1)$ is in $k$-spectrum if the random graph $G\left(n, n^{-\alpha}\right)$ does not obey the Zero-One $k$-Law. In 1988, it was proven by J. Spencer and S . Shelah that $k$-spectrum can only contain rational numbers.

In 2012, M. Zhukovskii proved that the smallest number in $k$-spectrum is $\frac{1}{k-2}$. The full structure of $k$-spectrum remains unexplained. It is known, however (M. Zhukovskii), that $\frac{1}{2}$ is the limit point of 5 -spectrum while 3spectrum is finite. Finally, it was proven by A. Matushkin and M. Zhukovskii in 2018 that there can be no limit points in 4 -spectrum but $\frac{1}{2}$ and $\frac{3}{5}$.

We have tested $\frac{1}{2}$ and $\frac{3}{5}$ on whether they are limit points of 4 -spectrum. Thus, we find the minimal $k$ such that $k$-spectrum is infinite.

This work is partially supported by the Russian Foundation for Basic Research (grant 20-31-70025).

## References

[1] S. Shelah and J.H. Spencer, Zero-one laws for sparse random graphs, Journal of American Mathematical Society, 1, 1988, pp. 97-115.
[2] M.E. Zhukovskii, Zero-One $k$-Law, Discrete Mathematics, 312, 2012, pp. 1670-1688.
[3] A.D. Matushkin and M.E. Zhukovskii, First order sentences about random graphs: small number of alternations, Discrete Applied Mathematics, 236, 2018, pp. 329-346.
[4] J. H. Spencer, The Strange Logic of Random Graphs, in: Algorithms and Combinatorics, Springer-Verlag, Berlin, 2001.

