
Erdős–Ko–Rado: Structure and Sparsification 8th PCC

Exercises

The following exercises accompany the tutorial, “Erdős–Ko–Rado: Structure and Sparsifi-
cation,” from the 8th Polish Combinatorial Conference, and are intended to help you fill in
the gaps from the lectures, practice the techniques, and see how the results can be applied
to research problems. If you would like to discuss your solutions, or have any questions,
concerns, comments, or funny jokes, please contact Shagnik at shagnik@mi.fu-berlin.de.

Spectral graph theory

Exercise 1 Let G be a d-regular graph on n vertices, and let λ1 ≥ λ2 ≥ . . . ≥ λn be its
eigenvalues. Show that the following hold.

(a) |λi| ≤ d for every i ∈ [n].

(b) λn = −d if and only if G is bipartite.

Exercise 2 In this exercise we shall prove an asymmetric form of the expander-mixing
lemma. Let G be a d-regular graph on n vertices with eigenvalues d = λ1 ≥ λ2 ≥ . . . ≥ λn.
Given vertex sets U,W ⊆ V (G), we define

e(U,W ) = |{(u,w) ∈ U ×W : {u,w} ∈ E(G)}| .

Show that ∣∣∣∣e(U,W )− d

n
|U | |W |

∣∣∣∣ ≤ λ

√
|U | |W |

(
1− |U |

n

)(
1− |W |

n

)
,

where λ = max {|λ2| , |λn|}.

The Kneser Graph and intersecting families

Exercise 3 Let n > 2k. We say families F ,G ⊆
(
[n]
k

)
are cross-intersecting if F ∩ G 6= ∅

for every F ∈ F and G ∈ G.

(a) How large can the product |F| |G| be if F and G are cross-intersecting?

(b) Characterise all pairs of cross-intersecting families that achieve equality in (a).

Bonus What if we want to maximise the sum |F|+ |G| instead?
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Exercise 4 In this exercise we shall derive the eigenvalues of the Kneser Graph.1 In order
to do so, we define two families of matrices. Given 0 ≤ t, k ≤ n, let Ct,k and Dt,k be the

containment and disjointness matrices, whose rows are indexed by the t-sets in
(
[n]
t

)
and

columns are indexed by the k-sets in
(
[n]
k

)
, and whose entries are defined by

Ct,k(T,K) =

{
1 if T ⊆ K,

0 otherwise,
and Dt,k(T,K) =

{
1 if T ∩K = ∅,
0 otherwise.

Note that, in particular, Ck,k is the
(
n
k

)
×
(
n
k

)
identity matrix, and Dk,k is the adjacency

matrix of the Kneser Graph KG(n, k).

(a) Prove the following identities

Ci,jCj,t =

(
t− i
j − i

)
Ci,t and Ci,jDj,t =

(
n− t− i
j − i

)
Di,t.

(b) Prove a couple more identities2

Ct,k =
t∑

i=0

(−1)iCT
i,tDi,k and Dt,k =

t∑
i=0

(−1)iCT
i,tCi,k.

(c) Given a matrix M , let row(M) denote its row space (over R, say). Show that the row
spaces of our matrices satisfy the following relations:

(i) row(Ci,k) ≤ row(Cj,k) for i ≤ j ≤ k.

(ii) row(Di,j) ≤ row(Dj,k) for i ≤ j ≤ n− k.

(iii) row(Cj,k) = row(Dj,k) for j ≤ k ≤ n− j.

(d) Since Ck,k is the identity, part (i) above gives us a nested sequence of subspaces

row(C0,k) ≤ row(C1,k) ≤ . . . ≤ row(Ck,k) = R(n
k). Thus, if we let U0 = row(C0,k) and,

for each 1 ≤ i ≤ k, let Ui be the orthogonal complement of row(Ci−1,k) in row(Ci,k),

we obtain an orthogonal decomposition R(n
k) = U0 ⊕ U1 ⊕ . . .⊕ Uk.

Complete the proof by showing, for each 0 ≤ i ≤ k, that Ui is an eigenspace of
KG(n, k) = Dk,k with eigenvalue λ = (−1)i

(
n−k−i
k−i

)
1The “proof by exercise” is often a good accompaniment to the “proof by example,” I find.
2If you think the only reason these identities are separated from those in part (a) is because I couldn’t

fit all four identities in a single line, you are quite correct.
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Supersaturation

One consequence of the Erdős–Ko–Rado Theorem is that, when n ≥ 2k, any family F ⊆
(
[n]
k

)
of size larger than

(
n−1
k−1

)
must contain pairs of disjoint sets. It is an open problem to determine

the minimum number of such pairs that must appear in these large families.3 In the following
exercises, you will use the results from the tutorial to provide some initial answers to this
question.

Exercise 5 Let n > 2k, and let F ⊆
(
[n]
k

)
be a k-uniform set family.

(a) Let ε > 0 be such that ε = o
(
n−2k
n

)
. Deduce from the robust stability theorem4 that if

|F| ≥ (1 + ε)
(
n−1
k−1

)
, then F must contain at least 1

2
ε
(
n−1
k−1

)(
n−k−1
k−1

)
pairs of disjoint sets.

(b) Using the Hilton-Milner Theorem, sharpen the estimate from part (a) in the case
when |F| =

(
n−1
k−1

)
+ 1 by showing that any such family contains at least

(
n−k−1
k−1

)
pairs

of disjoint sets. Give an example to show this bound is best possible.

Exercise 6 Combine the robust stability lemma with some combinatorial arguments to
extend the exact result of 5(b) to a wider range. Specifically, prove that if n ≥ n0(k)
and ε ≤ ε0(n, k), then any family F ⊆

(
[n]
k

)
of size at least (1 + ε)

(
n−1
k−1

)
contains at least

ε
(
n−1
k−1

)(
n−k−1
k−1

)
pairs of disjoint sets. How small can you make n0, and how large can you

make ε0?

Sparse Erdős–Ko–Rado

In the Erdős–Ko–Rado Theorem, one is free to choose any set from
(
[n]
k

)
to be in the set family,

provided one avoids all pairs of disjoint sets. In line with recent trends in combinatorial
research, one might seek to extend the theorem to the sparse random setting. One such
direction was proposed by Bollobás, Narayanan and Raigorodskii, who asked when larger
families can be constructed if one only wishes to avoid a random subcollection of the pairs
of disjoint sets.

3A conjecture of Bollobás and Leader [B. Bollobás and I. Leader, Set systems with few disjoint pairs,
Combinatorica 23 (2003), 559–570.] suggests that the optimal family should always belong to a group of
constructions called `-balls. An asymptotic result in this direction was provided by Frankl, Kohayakawa
and Rödl [P. Frankl, Y. Kohayakawa and V. Rödl, A note on supersaturated set systems, European J.
Combin. 51 (2016), 190–199.], and exact results for some ranges of parameters can be found in joint work
with Gan and Sudakov [S. Das, W. Gan and B. Sudakov, The minimum number of disjoint pairs in set
systems and related problems, Combinatorica 36 (2016), 623–660.] and with Balogh, Liu, Sharifzadeh and
Tran [J. Balogh, S. Das, H. Liu, M. Sharifzadeh and T. Tran, Structure and supersaturation for intersecting
families, Electron. J. Comb. 26 (2019), P2.34.]. However, the latter paper also contains a counterexample
to the conjecture, suggesting that the truth may be considerably more complex.

4That is, the final theorem presented in the tutorial.
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The sparsified problem is perhaps more naturally stated in terms of the Kneser Graph
KG(n, k).5 Recall that the Erdős–Ko–Rado Theorem asserts that, when n ≥ 2k, we have
α (KG(n, k)) =

(
n−1
k−1

)
. Now, given p ∈ [0, 1], let KG(n, k)p denote the random spanning

subgraph of KG(n, k), where each edge is retained independently with probability p. Since
KG(n, k)p ⊆ KG(n, k), we clearly have α (KG(n, k)p) ≥

(
n−1
k−1

)
, and we have equality when

p = 1. The problem is to determine how small p can be while still maintaining equality.6

Exercise 7 Show that7 there is some absolute constant c > 0 such that, if k, n→∞ with
k ≤ cn, then, if we define

p0 =
ln
(
n
(
n−1
k

))(
n−k−1
k−1

) ,

for every ε > 0 we have

(a) if p > (1 + ε)p0, then with high probability α (KG(n, k)p) =
(
n−1
k−1

)
, and

(b) if p < (1− ε)p0, then with high probability α (KG(n, k)p) ≥
(
n−1
k−1

)
+ 1.

Bonus What if we do not require that the Kneser subgraph is random? How sparse can a
spanning subgraph G ⊆ KG(n, k) be if we still require that α(G) =

(
n−1
k−1

)
?

5Indeed, it is a little harder to phrase this problem in terms of intersecting set families. A different
question that makes more sense in that setting was introduced by Balogh, Bohman and Mubayi [J. Balogh,
T. Bohman and D. Mubayi, Erdős–Ko–Rado in random hypergraphs, Comb. Probab. Comput. 18 (2009),

629–646.]. Let
(
[n]
k

)
p

denote the random k-uniform hypergraph, where every k-set survives independently

with probability p. The question is then to determine what the largest intersecting subfamilies F ⊆
(
[n]
k

)
p

are. As every subfamily of a star is still intersecting, we expect to find intersecting families of size p
(
n−1
k−1

)
,

but could there be larger families? Following the initial paper, results for this problem were provided by
Gauy, Hàn and Oliviera [M. M. Gauy, H. Hàn and I. C. Oliviera, Erdős–Ko–Rado for random hypergraphs:
asymptotics and stability, Comb. Probab. Comput. 26 (2017), 406–422.], Hamm and Kahn [A. Hamm and
J. Kahn, On Erdős–Ko–Rado for random hypergraphs II, Comb. Probab. Comput. 28 (2019), 61–80.],
and in joint work with Balogh, Delcourt, Liu and Sharifzadeh [J. Balogh, S. Das, M. Delcourt, H. Liu and
M. Sharifzadeh, Intersecting families of discrete structures are typically trivial, J. Comb. Theory Ser. A
132 (2015), 224–245.]. It remains open to determine the threshold for when the stars give the right answer
for larger k; as hinted at in the tutorials, this problem seems to become difficult when k = Ω̃

(
n1/2

)
.

6It is perhaps worth noting that this problem was the original motivation behind our development of the
robust stability theorem. In the original paper [B. Bollobás, B. P. Narayanan and A. M. Raigorodskii, On
the stability of the Erdős–Ko–Rado theorem, J. Combin. Theory Ser. A 137 (2016), 64–78.], the threshold
probability was determined for k = o

(
n1/3

)
. A subsequent paper of Balogh, Bollobás and Narayanan

[J. Balogh, B. Bollobás and B. P. Narayanan, Transference for the Erdős–Ko–Rado theorem, Forum of
Mathematics, Sigma 3 (2015), e23.] considered the problem for larger k, showing that the threshold must
still be very small in this range. After we [S. Das and T. Tran, Removal and stability for Erdős–Ko–Rado,
SIAM J. Discrete Math. 30 (2016), 1102–1114.] determined the threshold for k bounded away from 1

2n,
Devlin and Kahn [P. Devlin and J. Kahn, On “stability” in the Erdős–Ko–Rado Theorem, SIAM J. Discrete
Math. 30 (2016), 1283–1289.] completed the picture, solving the problem when k is close to 1

2n. It remains
to prove a sharp threshold when k is very large, and also to prove a sharp hitting time version of this result.

7And, in doing so, notice that this shows there is a tremendous amount of redundancy in the Erdős–Ko–
Rado Theorem: one only needs to forbid a tiny fraction of the disjoint pairs to achieve the same result!
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