Group Testing

Amin Coja-Oghlan

Goethe University Frankfurt

based on joint work with Oliver Gebhard, Max Hahn-Klimroth, Phillip Loick

Group testing

The problem

[D43,DH93]

- ► *n* =population size, $k = n^{\theta} =$ #infected, *m* = #tests
- all tests conducted in parallel
- how many tests are necessary...
- ... information-theoretically?
- ...algorithmically?

[non-adaptive]

Information-theoretic lower bounds

► if $k \sim n^{\theta}$ we need $2^{m} \ge {n \choose k} \implies m \ge \frac{1-\theta}{\log 2} \cdot k \log n$

Random hypergraphs

A randomised test design

[JAS16,A17]

• a random Δ -regular Γ -uniform hypergraph with

$$\Delta \sim \frac{m \log 2}{k}, \qquad \qquad \Gamma \sim \frac{n \log 2}{k}$$

• the choice of Δ , Γ maximises the entropy of the test results

Theorem

Let

$$m_{\rm rnd} = \max\left\{\frac{1-\theta}{\log 2}, \frac{\theta}{\log^2 2}\right\} k \log n \quad \text{where} \quad k \sim n^{\theta}$$

The inference problem on the random hypergraph

- is insoluble if $m < (1 \varepsilon)m_{rnd}$
- reduces to hypergraph VC if $m > (1 + \varepsilon) m_{rnd}$

[JAS16]

[COGHKL19]

DD: Definitive Defectives

- declare all individuals in negative tests uninfected
- check for positive tests with just one undiagnosed individual
- declare those individuals infected
- declare all others uninfected
- *~~ may produce false negatives*

DD: Definitive Defectives

- declare all individuals in negative tests uninfected
- check for positive tests with just one undiagnosed individual
- declare those individuals infected
- declare all others uninfected
- ~> may produce false negatives

DD: Definitive Defectives

- declare all individuals in negative tests uninfected
- check for positive tests with just one undiagnosed individual
- declare those individuals infected
- declare all others uninfected
- ~> may produce false negatives

SCOMP: greedy vertex cover

[ABJ14]

- declare all individuals in negative tests uninfected
- check for positive tests with just one undiagnosed individual
- declare those individuals infected
- greedily cover the remaining positive tests
- ► ~→ may produce false positives/negatives
- *Conjecture:* SCOMP strictly outperforms DD

Theorem

[ABJ14,COGHKL19]

Let

$$m_{\rm DD} = \frac{\max\{1-\theta,\theta\}}{\log^2 2} k \log n$$

- if $m > (1 + \varepsilon) m_{DD}$ then both DD and SCOMP succeed
- if $m < (1 \varepsilon) m_{DD}$ then both of them fail

Theorem

[COGHKL20]

There exist a test design and an efficient algorithm SPIV that succeed w.h.p. for

$$m \sim m_{\text{rnd}} = \max\left\{\frac{1-\theta}{\log 2}, \frac{\theta}{\log^2 2}\right\} k \log n$$

Spatial coupling

- a ring comprising $1 \ll \ell \ll \log n$ compartments
- individuals join tests within a sliding window of size $1 \ll s \ll \ell$
- extra tests at the start facilitate DD

inspired by low-density parity check codes

[KMRU10]

The algorithm

- 1. run DD on the *s* seed compartments
- 2. declare all individuals that appear in negative tests uninfected
- 3. tentatively declare infected k/ℓ individuals with max score W_x
- 4. combinatorial clean-up step

Unexplained tests

► let W_{x,j} be the number of 'unexplained' positive tests j − 1 compartments to the right of x

Unexplained tests

- if x is infected, then $W_{x,j} \sim \text{Bin}(\Delta/s, 2^{j/s-1})$
- if x is uninfected, then $W_{x,j} \sim \text{Bin}(\Delta/s, 2^{j/s} 1)$

The score: first attempt

- just count unexplained tests
- we find the large deviations rate function of $\sum_{i=1}^{s-1} W_{x,i}$
- unfortunately, we will likely misclassify $\gg k$ individuals

The score: second attempt

- consider a weighted sum $W_x = \sum_{j=1}^{s-1} w_j W_{x,j}$
- Belief Propagation \rightsquigarrow optimal weights $w_j = -\log(1 2^{-j/s})$
- only o(k) misclassifications

Theorem

[COGHKL19]

Non-adaptive group testing is information-theoretically impossible with $(1 - \varepsilon)m_{\rm rnd}$ tests.

Proof strategy

- *Dilution:* it suffices to consider $\theta = 1 \delta$
- Regularisation: optimal designs are approximately regular
- Positive correlation: probability of being disguised [MT11,A18]
- Probabilistic method: disguised individuals likely exist

Dilution

• assume that for *some* $\log(2)/(1 + \log(2)) < \theta < 1$ we get by with

$$m < (1 - \varepsilon) \frac{\theta}{\log^2 2} k \log n$$

then this improvement extends to all

$$\frac{\log(2)}{1+\log(2)} < \theta < 1$$

- just add a suitable number of healty dummies
- hence we may assume $\theta = 1 \delta$

Regularisation

we may assume that there are no tests of size greater than

$$\frac{n}{k}\log n$$

► ⇒ no more than $\frac{n}{\log n}$ individuals have degree more than $\log^3 n$

Positive correlation

- assume $\theta > 1 \delta$ for a small $\delta > 0$
- FKG inequality \Rightarrow it's a bad idea to create short cycles
- good designs locally resemble a (Δ, Γ) -regular tree

Probablistic method

- ► call an individual *x disguised* if every test $a \in \partial x$ contains another individual $y \neq x$ that is infected
- many disguised healthy *and* infected individuals
- therefore, there are several solutions

Adaptive group testing

Beating the lower bound

- tests are conducted in several stages
- *Goal*: to minimise the number of tests and of stages
- ► a 3-stage design and algorithm are known with [S19]

$$m \sim \frac{1-\theta}{\log 2} k \log n$$

An optimal 2-stage design

Stage 1

use the spatially coupled test design with

$$m \sim \frac{1-\theta}{\log 2} k \log n, \qquad \Delta \sim (1-\theta) \log n, \qquad \Gamma \sim \frac{n \log 2}{k}$$

- apply Steps 1–3 of SPIV
- drop the clean-up step

An optimal 2-stage design

Stage 2

- test each individual that Stage 1 deems infected separately
- ► to the rest apply the random hypergraph design and DD with

$$m' = k,$$
 $\Delta' = \lceil 10 \log n \rceil$

• $\rightsquigarrow O(k)$ tests in total

An optimal 2-stage design

Theorem

[COGHKL20]

There exist a 2-stage test design and an efficient inference algorithm with

$$m \sim \frac{1-\theta}{\log 2} k \log n.$$

Matches the counting lower bound.

Contributions

- optimal efficient non-adaptive algorithm SPIV
- matching information-theoretic lower bound
- optimal two-round adaptive algorithm

Practical group testing

- in wet lab one should assume $k = \Theta(n)$
- non-adaptive testing impossible [A19]
- Belief Propagation leads to promising multi-stage schemes

Open problems

- optimal adaptive designs in the linear case
- combinatorial group testing
- further applications of spatial coupling
- practical group testing

https://arxiv.org/abs/1911.02287