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Group testing

The problem [D43,DH93]

Ï n =population size, k = nθ = #infected, m = #tests

Ï all tests conducted in parallel [non-adaptive]

Ï how many tests are necessary. . .

Ï . . . information-theoretically?

Ï . . . algorithmically?



Information-theoretic lower bounds
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Random hypergraphs

A randomised test design [JAS16,A17]

Ï a random ∆-regular Γ-uniform hypergraph with

∆∼ m log2

k
, Γ∼ n log2

k

Ï the choice of ∆,Γmaximises the entropy of the test results



Random hypergraphs
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Theorem

Let
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}
k logn where k ∼ nθ

The inference problem on the random hypergraph

Ï is insoluble if m < (1−ε)mrnd [JAS16]

Ï reduces to hypergraph VC if m > (1+ε)mrnd [COGHKL19]



Greedy algorithms

DD: Definitive Defectives [ABJ14]

Ï declare all individuals in negative tests uninfected

Ï check for positive tests with just one undiagnosed individual

Ï declare those individuals infected

Ï declare all others uninfected

Ï  may produce false negatives
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Greedy algorithms

SCOMP: greedy vertex cover [ABJ14]

Ï declare all individuals in negative tests uninfected

Ï check for positive tests with just one undiagnosed individual

Ï declare those individuals infected

Ï greedily cover the remaining positive tests

Ï  may produce false positives/negatives

Ï Conjecture: SCOMP strictly outperforms DD [ABJ14]



Greedy algorithms
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Theorem [ABJ14,COGHKL19]

Let

mDD = max{1−θ,θ}

log2 2
k logn

Ï if m > (1+ε)mDD then both DD and SCOMP succeed

Ï if m < (1−ε)mDD then both of them fail



The SPIV algorithm
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Theorem [COGHKL20]

There exist a test design and an efficient algorithm SPIV that
succeed w.h.p. for

m ∼ mrnd = max

{
1−θ
log2

,
θ

log2 2

}
k logn



The SPIV algorithm
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Spatial coupling

Ï a ring comprising 1 ¿ `¿ logn compartments

Ï individuals join tests within a sliding window of size 1 ¿ s ¿ `

Ï extra tests at the start facilitate DD

inspired by low-density parity check codes [KMRU10]



The SPIV algorithm
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The algorithm

1. run DD on the s seed compartments

2. declare all individuals that appear in negative tests uninfected

3. tentatively declare infected k/` individuals with max score Wx

4. combinatorial clean-up step



The SPIV algorithm

x

Unexplained tests

Ï let Wx, j be the number of ‘unexplained’ positive tests j −1
compartments to the right of x



The SPIV algorithm

x

Unexplained tests

Ï if x is infected, then Wx, j ∼ Bin(∆/s,2 j /s−1)

Ï if x is uninfected, then Wx, j ∼ Bin(∆/s,2 j /s −1)



The SPIV algorithm
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The score: first attempt

Ï just count unexplained tests

Ï we find the large deviations rate function of
s−1∑
j=1

Wx, j

Ï unfortunately, we will likely misclassify À k individuals



The SPIV algorithm

x

The score: second attempt

Ï consider a weighted sum Wx =
s−1∑
j=1

w j Wx, j

Ï Belief Propagation optimal weights w j =− log(1−2− j /s)

Ï only o(k) misclassifications



A matching lower bound

0 log2
1+log2

1
2

1

log−2 2

log−1 2

(2log2 2)−1

((1+ log2) log2)−1

Theorem [COGHKL19]

Non-adaptive group testing is information-theoretically impossible
with (1−ε)mrnd tests.



A matching lower bound
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Proof strategy

Ï Dilution: it suffices to consider θ = 1−δ
Ï Regularisation: optimal designs are approximately regular

Ï Positive correlation: probability of being disguised [MT11,A18]

Ï Probabilistic method: disguised individuals likely exist



A matching lower bound

Dilution

Ï assume that for some log(2)/(1+ log(2)) < θ < 1 we get by with

m < (1−ε)
θ

log2 2
k logn

Ï then this improvement extends to all

log(2)

1+ log(2)
< θ < 1

Ï just add a suitable number of healty dummies

Ï hence we may assume θ = 1−δ



A matching lower bound

Regularisation

Ï we may assume that there are no tests of size greater than

n

k
logn

Ï ⇒ no more than n
logn individuals have degree more than log3 n



A matching lower bound

?

Positive correlation

Ï assume θ > 1−δ for a small δ> 0

Ï FKG inequality ⇒ it’s a bad idea to create short cycles

Ï good designs locally resemble a (∆,Γ)-regular tree



A matching lower bound

?

Probablistic method

Ï call an individual x disguised if every test a ∈ ∂x contains
another individual y 6= x that is infected

Ï many disguised healthy and infected individuals

Ï therefore, there are several solutions



Adaptive group testing
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Beating the lower bound

Ï tests are conducted in several stages

Ï Goal: to minimise the number of tests and of stages

Ï a 3-stage design and algorithm are known with [S19]

m ∼ 1−θ
log2

k logn



An optimal 2-stage design

Stage 1

Ï use the spatially coupled test design with

m ∼ 1−θ
log2

k logn, ∆∼ (1−θ) logn, Γ∼ n log2

k

Ï apply Steps 1–3 of SPIV
Ï drop the clean-up step



An optimal 2-stage design

Stage 2

Ï test each individual that Stage 1 deems infected separately

Ï to the rest apply the random hypergraph design and DD with

m′ = k, ∆′ = d10logne

Ï  O(k) tests in total



An optimal 2-stage design

Theorem [COGHKL20]

There exist a 2-stage test design and an efficient inference
algorithm with

m ∼ 1−θ
log2

k logn.

Matches the counting lower bound.



Contributions
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Ï optimal efficient non-adaptive algorithm SPIV
Ï matching information-theoretic lower bound

Ï optimal two-round adaptive algorithm



Practical group testing

Ï in wet lab one should assume k =Θ(n)

Ï non-adaptive testing impossible [A19]

Ï Belief Propagation leads to promising multi-stage schemes



Open problems

Ï optimal adaptive designs in the linear case

Ï combinatorial group testing

Ï further applications of spatial coupling

Ï practical group testing

https://arxiv.org/abs/1911.02287


