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Thue�Morse(�Prouhet) sequence t : N→ {+1,−1}

+−−+−++−−++−+−−+−++−+−−++−−+−++− . . .

The Thue�Morse sequence (discovered by Prouhet) can be seen in many ways:

1 Explicit formula:

t(n) =

{
+1 if n is evil (i.e., sum of binary digits is even),

−1 if n is odious (i.e., sum of binary digits is odd).

2 Automatic sequence:

+1start −1

0 0

1

1

3 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+ 1) = −t(n).

4 Fixed point of a substitution: + 7→ +−, − 7→ −+.

5 Formal power series: Let t′(n) = 1−t(n)
2
∈ {0, 1} and T (z) =

∑∞
n=0 t

′(n)zn. Then

z + (1 + z)2T (z) + (1 + z)3T (z)2 = 0 mod 2.
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Uniformity of Thue�Morse

Question (Mauduit & Sarközy (1998))

Is the Thue�Morse sequence pseudorandom (in some meaningful sense)?

No! At least in some ways.

1 Linear subword complexity: #
{
w ∈ {+1,−1}` : w appears in t

}
= O(`).

2 # {n < N : t(n) = t(n+ 1)} ' N/3 6= N/2. −→ t(n) = t(n+ 1) i� 2 - ν2(n+ 1)

3 # {n < N : t(n) = t(n+ 1) = t(n+ 2)} = 0. −→ in general: t is cube-free

But in other ways, Yes!

1 E
n<N

t(n) = O(1/N) (not very hard). −→ E
n<N

is shorthand for
1

N

N−1∑
n=0

2 E
n<N

t(an+ b) = O(N−c) with c > 0. −→ Gelfond (1968)

3 sup
α∈R

∣∣∣∣ E
n<N

t(n)e(nα)

∣∣∣∣ = O(N−c) with c > 0. −→ shorthand: e(θ) = e2πiθ

3 / 19



Uniformity of Thue�Morse

Question (Mauduit & Sarközy (1998))

Is the Thue�Morse sequence pseudorandom (in some meaningful sense)?

No! At least in some ways.

1 Linear subword complexity: #
{
w ∈ {+1,−1}` : w appears in t

}
= O(`).

2 # {n < N : t(n) = t(n+ 1)} ' N/3 6= N/2. −→ t(n) = t(n+ 1) i� 2 - ν2(n+ 1)

3 # {n < N : t(n) = t(n+ 1) = t(n+ 2)} = 0. −→ in general: t is cube-free

But in other ways, Yes!

1 E
n<N

t(n) = O(1/N) (not very hard). −→ E
n<N

is shorthand for
1

N

N−1∑
n=0

2 E
n<N

t(an+ b) = O(N−c) with c > 0. −→ Gelfond (1968)

3 sup
α∈R

∣∣∣∣ E
n<N

t(n)e(nα)

∣∣∣∣ = O(N−c) with c > 0. −→ shorthand: e(θ) = e2πiθ

3 / 19



Uniformity of Thue�Morse

Question (Mauduit & Sarközy (1998))

Is the Thue�Morse sequence pseudorandom (in some meaningful sense)?

No! At least in some ways.

1 Linear subword complexity: #
{
w ∈ {+1,−1}` : w appears in t

}
= O(`).

2 # {n < N : t(n) = t(n+ 1)} ' N/3 6= N/2. −→ t(n) = t(n+ 1) i� 2 - ν2(n+ 1)

3 # {n < N : t(n) = t(n+ 1) = t(n+ 2)} = 0. −→ in general: t is cube-free

But in other ways, Yes!

1 E
n<N

t(n) = O(1/N) (not very hard). −→ E
n<N

is shorthand for
1

N

N−1∑
n=0

2 E
n<N

t(an+ b) = O(N−c) with c > 0. −→ Gelfond (1968)

3 sup
α∈R

∣∣∣∣ E
n<N

t(n)e(nα)

∣∣∣∣ = O(N−c) with c > 0. −→ shorthand: e(θ) = e2πiθ

3 / 19



Uniformity of Thue�Morse

Question (Mauduit & Sarközy (1998))

Is the Thue�Morse sequence pseudorandom (in some meaningful sense)?

No! At least in some ways.

1 Linear subword complexity: #
{
w ∈ {+1,−1}` : w appears in t

}
= O(`).

2 # {n < N : t(n) = t(n+ 1)} ' N/3 6= N/2. −→ t(n) = t(n+ 1) i� 2 - ν2(n+ 1)

3 # {n < N : t(n) = t(n+ 1) = t(n+ 2)} = 0. −→ in general: t is cube-free

But in other ways, Yes!

1 E
n<N

t(n) = O(1/N) (not very hard). −→ E
n<N

is shorthand for
1

N

N−1∑
n=0

2 E
n<N

t(an+ b) = O(N−c) with c > 0. −→ Gelfond (1968)

3 sup
α∈R

∣∣∣∣ E
n<N

t(n)e(nα)

∣∣∣∣ = O(N−c) with c > 0. −→ shorthand: e(θ) = e2πiθ

3 / 19



Uniformity of Thue�Morse

Question (Mauduit & Sarközy (1998))

Is the Thue�Morse sequence pseudorandom (in some meaningful sense)?

No! At least in some ways.

1 Linear subword complexity: #
{
w ∈ {+1,−1}` : w appears in t

}
= O(`).

2 # {n < N : t(n) = t(n+ 1)} ' N/3 6= N/2. −→ t(n) = t(n+ 1) i� 2 - ν2(n+ 1)

3 # {n < N : t(n) = t(n+ 1) = t(n+ 2)} = 0. −→ in general: t is cube-free

But in other ways, Yes!

1 E
n<N

t(n) = O(1/N) (not very hard). −→ E
n<N

is shorthand for
1

N

N−1∑
n=0

2 E
n<N

t(an+ b) = O(N−c) with c > 0. −→ Gelfond (1968)

3 sup
α∈R

∣∣∣∣ E
n<N

t(n)e(nα)

∣∣∣∣ = O(N−c) with c > 0. −→ shorthand: e(θ) = e2πiθ

3 / 19



Gelfond problems

1 The Thue-Morse sequence does not correlate with the primes:

E
n<N

t(pn) = O(N−c) for some c > 0,

where pn is the n-th prime, Mauduit & Rivat (2010).

2 The Thue�Morse sequence does not correlate with the squares

E
n<N

t(n2) = O(N−c) for some c > 0,

Mauduit & Rivat (2009). Moreover, t(n2) is normal (i.e., each subword appears
with the �right� frequency) Drmota, Mauduit & Rivat (2013).
Open problem: What about t(n3)?

3 The Thue�Morse sequence does not correlate with Piatetski-Shapiro sequences:

E
n<N

t(bnαc) = O(N−c) for some c > 0,

where 1 < α < 2, Spiegelhofer (2020+). Also, t(n) has level of distribution 1.
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Additive combinatorics perspective

Consider the set T = {n ∈ N : t(n) = +1}. We are interested in additive properties
of T , speci�cally:

Pick ` ≥ 3. How many ` term arithmetic progressions are there in T ∩ [0, N),
asymptotically as N →∞?

Random model suggests that the count of ` term arithmetic progressions in
T ∩ [0, N) should be ' N2/(`− 1)2`+1. Is this valid? With what error term?

More generally, pick a sequence ε0, . . . , ε`−1 ∈ {+1,−1}. How many pairs m,n
are there with 0 ≤ n+ im < N and t(n+ im) = εi for all 0 ≤ i < `,
asymptotically as N →∞?

Even more generally, pick a sequence of a�ne maps A0, A1, . . . , A`−1 : Zd → Z.
How many d-tuples n0, n1, . . . , nd−1 are there with 0 ≤ Ai(n0, . . . , nd−1) < N
and t(Ai(n0, . . . , nd−1)) = εi for all 0 ≤ i < `, asymptotically as N →∞?
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Fourier analysis: �rst glance

Problem: Let A ⊂ [N ], #A = αN and ` ∈ N. How many `-term arithmetic
progressions in A? Is there at least one?
−→ [N ] := {0, 1, . . . , N − 1}; we identify [N ] ' Z/NZ and assume N is prime.

Fourier expansion:

1A(n) =
∑
ξ<N

1̂A(ξ)e

(
ξn

N

)
, where 1̂A(ξ) = E

n<N

1A(n)e

(
−ξn
N

)

Note that 1̂A(0) = α.

Motto: A is uniform ⇐⇒ 1̂A(ξ) are small for ξ 6= 0.

Lemma

Suppose that
∣∣1̂A(ξ)

∣∣ < ε for all ξ 6= 0. Then

#
{

(n,m) ∈ [N ]2 : n, n+m,n+ 2m ∈ A
}

=
α3

4
N2 +O(εN2).

Corollary: The number of 3-term APs in {n ∈ [N ] : t(n) = +1} is ' N2/32.
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Higher order Fourier analysis: Introduction

Fact (Fourier analysis is not enough)

There exist A ⊂ [N ], #A = αN such that 1̂A(ξ) ' 0 for ξ 6= 0 but the number of
4-term APs in A is not ' α4N2/6 (like for a random set).

Example: A =
{
n ∈ [N ] : 0 ≤

{
n2
√

2
}
< α

}
. −→ {x} = x− bxc

Higher order Fourier analysis

De�nition (Gowers norm)

Fix s ≥ 1. Let f : [N ]→ R. Then ‖f‖Us[N ] ≥ 0 is de�ned by:

‖f‖2
s

Us[N ] = E
n

∏
ω∈{0,1}s

f (n0 + ω1n1 + . . . ωsns) ,

where the average is taken over all parallelepipeds in [N ], i.e., over all
n = (n0, . . . , ns) ∈ Zs+1 such that n0 + ω1n1 + . . . ωsns ∈ [N ] for all ω ∈ {0, 1}s.
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Higher order Fourier analysis: Basic properties

Facts:

1 ‖f‖Us[N ] is well-de�ned for s ≥ 1, i.e., the average on the RHS is ≥ 0

2 ‖f‖U1[N ] = |Enf(n)| and ‖f‖U2[N ]
.
= ‖f̂‖`4 −→ true in Z/NZ rather than [N ]

3 ‖f‖U1[N ] � ‖f‖U2[N ] � ‖f‖U3[N ] � . . .

4 ‖f + g‖Us[N ] ≤ ‖f‖Us[N ] + ‖g‖Us[N ] and ‖λf‖Us[N ] = |λ| ‖f‖Us[N ]

Example

If p ∈ R[x], f(n) = e(p(n)), deg p = s then ‖f‖Us[N ] ' 0 but ‖f‖Us+1[N ] = 1.
−→ assume here that the leading coe�cient of p is reasonable

Theorem (Generalised von Neumann Theorem)

Fix s ≥ 1. If A ⊂ [N ], #A = αN and ‖1A − α1[N ]‖Us[N ] ≤ ε, then A contains as
many (s+ 1)-term APs as a random set of the same size, up to an error of size ε:

#
{

(n,m) ∈ [N ]2 : n, n+m, . . . , n+ sm ∈ A
}

= αsN2/2s+O(εN2).
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Gowers uniform sequences

Let µ denote the Möbius function

µ(n) =

{
(−1)k if n = p1 . . . pk where p1, . . . , pk are distinct primes,

0 if n is divisible by a square.

Recall that µ is multiplicative, meaning that µ(mn) = µ(m)µ(n) if gcd(m,n) = 1.

Theorem (Green & Tao (2008+2012))

Fix s ≥ 2. The Möbius function is Gowers uniform of order s:

‖µ‖Us[N ] → 0 as N →∞.

Hence, the primes contain many arithmetic progressions of length s+ 1.
−→ Vast over-simpli�cation, quantitative bounds needed, etc.

Theorem (Frantzikinakis & Host (2017))

Let ν be a (bounded) multiplicative function and s ≥ 2. Then

‖ν‖Us[N ] → 0 as N →∞ if and only if ‖ν‖U2[N ] → 0 as N →∞.
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Higher order Fourier analysis & Thue�Morse

Recall: t(n) =

{
+1 if the sum of binary digits of n is even,

−1 if the sum of binary digits of n is odd.

Theorem (K. (2019))

Fix s ≥ 1. There exists c = cs > 0 such that ‖t‖Us[N ] � N−c.

Corollary

Fix s ≥ 1 and let c = cs be as above. Then for any εi ∈ {+1,−1}, (0 ≤ i ≤ s)

#
{

(n,m) : n+ im < N and t(n+ im) = εi for 0 ≤ i ≤ s
}

=
N2

2s+2s
+O(N2−c).

In particular, the number of (s+ 1)-term arithmetic progressions contained in the set
{n < N : t(n) = +1} is N2/2s+2s+O(N2−c).

Same holds for the Rudin�Shapiro sequence (count appearances of the pattern
11 instead of 1) as well as other pattern-counting sequences.
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Higher order Fourier analysis & k-multiplicative sequences

De�nition

Fix k ≥ 2. A sequence f : N→ C is k-multiplicative if

f(n+m) = f(n)f(m) for all n,m s.t. m < ki, ki|n for some i.

Example

The Thue�Morse sequence t(n) is 2-multiplicative. More generally, let

sk(n) = sum of digits of n in base k.

Then e(αsk(n)) is k-multiplicative for any α ∈ R. −→ e(θ) = e2πiθ

Theorem (Fan & K. (2019))

Let f be a bounded k-multiplicative function and s ≥ 2. Then

‖f‖Us[N ] → 0 as N →∞ if and only if ‖f‖U2[N ] → 0 as N →∞.

11 / 19



Higher order Fourier analysis & k-multiplicative sequences

De�nition

Fix k ≥ 2. A sequence f : N→ C is k-multiplicative if

f(n+m) = f(n)f(m) for all n,m s.t. m < ki, ki|n for some i.

Example

The Thue�Morse sequence t(n) is 2-multiplicative. More generally, let

sk(n) = sum of digits of n in base k.

Then e(αsk(n)) is k-multiplicative for any α ∈ R. −→ e(θ) = e2πiθ

Theorem (Fan & K. (2019))

Let f be a bounded k-multiplicative function and s ≥ 2. Then

‖f‖Us[N ] → 0 as N →∞ if and only if ‖f‖U2[N ] → 0 as N →∞.

11 / 19



Higher order Fourier analysis & k-multiplicative sequences

De�nition

Fix k ≥ 2. A sequence f : N→ C is k-multiplicative if

f(n+m) = f(n)f(m) for all n,m s.t. m < ki, ki|n for some i.

Example

The Thue�Morse sequence t(n) is 2-multiplicative. More generally, let

sk(n) = sum of digits of n in base k.

Then e(αsk(n)) is k-multiplicative for any α ∈ R. −→ e(θ) = e2πiθ

Theorem (Fan & K. (2019))

Let f be a bounded k-multiplicative function and s ≥ 2. Then

‖f‖Us[N ] → 0 as N →∞ if and only if ‖f‖U2[N ] → 0 as N →∞.

11 / 19



Finite automata

Some notation: We let k denote the base in which we work. −→ e.g. k = 10, k = 2

Σk = {0, 1, . . . , k − 1}, the set of digits in base k;

Σ∗k is the set of words over Σk, monoid with concatenation;

for n ∈ N, (n)k ∈ Σ∗k is the base-k expansion of n. −→ no leading zeros

A �nite k-automaton consists of:

a �nite set of states S with a
distinguished initial state s0;

a transition function δ : S × Σk → S;

an output function τ : S → C.

+1

start

−1

+1 −1

1 10 0
1

1

0 0

Computing the sequence:

Extend δ to a map S × Σ∗k with δ(s, uv) = δ(δ(s, u), v);

The sequence computed by the automaton is given by a(n) = τ (δ(s0, (n)k)).

The automaton above computes the Rudin�Shapiro sequence (−1)# of 11 in (n)2 .

Motto: Automatic ⇐⇒ Computable by a �nite device.
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Automatic sequences

Let a : N→ Ω be a sequence. Then a is k-automatic if and only if it satis�es any/all
of the following equivalent conditions:

1 There exists a �nite k-automaton that computes a.

2 The k-kernel Nk(a) of a is �nite, where

Nk(a) =
{
a(ktn+ r) : t ∈ N, 0 ≤ r < kt

}
.

3 The sequence a is the letter-to-letter coding of a �xed point of a k-uniform
morphism on the monoid of words over some �nite alphabet.

4 (Applicable if k is a prime and Ω ⊂ F where F is a �eld of characteristic k.)
The formal power series F (z) =

∑∞
n=0 a(n)zn ∈ F[[z]] is algebraic over F(z).

Remark

The many alternative de�nitions create connections to combinatorics (graph theory,
combinatorics on words), computer science, dynamics (symbolic systems), algebra,
logic (Büchi arithmetic), etc.
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Uniformity of automatic sequences

Question

Which among k-automatic sequences are Gowers uniform?

If a k-automatic sequence is uniform of order 2, must it be uniform of all orders?

Example

The following sequences are 2-automatic and not Gowers uniform:

1 periodic sequences like 1 or (−1)n;

2 almost periodic sequences like ν2(n) mod 2; −→ 2ν2(n)||n

3 slowly varying sequences like blog2(n)c mod 2. −→ length of expansion

Theorem (Byszewski, K. & Müllner (2020+))

Any automatic sequence has a decomposition a = astr + auni, where auni is highly
Gowers uniform and astr is a combination of sequences of the above types.
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Arithmetic regularity lemma for automatic sequences
De�nition: A k-automatic sequence a(n) is forwards synchronising if there exists a
string of base-k digits w ∈ Σ∗k such that

a([xwy]k) = a([x′wy]k)

for all strings of base-k digits x, x′, y ∈ Σ∗k. Accordingly, a(n) is backwards
synchronising if there exists w ∈ Σ∗k such that

a([xwy]k) = a([xwy′]k)

for all strings of base-k digits x, y, y′ ∈ Σ∗k. −→ [z]k = integer whose expansion is z

Theorem (Byszewski, K. & Müllner (2020+))

Let a be an automatic sequence. Then there is a decomposition a = astr + auni where

1 for each s ≥ 2 there exists cs > 0 such that ‖auni‖Us[N ] � N−cs ;

2 there exist automatic sequences bper, bfs, bbs that are periodic, forwards
synchronising and backwards synchronising respectively and a function F such

that astr(n) = F
(
bper(n), bfs(n), bbs(n)

)
.

This is a distant relative of the celebrated Arithmetic Regularity Lemma, which
gives a similar decomposition for an arbitrary sequence, albeit with less
well-behaved components, Green & Tao, (2010).
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Applications and consequences

Corollary

Let a be a k-automatic sequence with ‖a‖U2[N ] → 0 as N →∞. Then for each s ≥ 2

there exists cs > 0 such that ‖a‖Us[N ] � N−cs .

We call a set A ⊂ N automatic if 1A is automatic.

Corollary

Let ` ≥ 2 and let A ⊂ N an automatic set with limN→∞
1
N

#A ∩ [0, N) = α > 0. Then
there exists δ > 0 such that for each N > 0 there are ≥ δN values of m ≤ N such
that A ∩ [0, N) contains 99

100
α`N arithmetic progressions with step m.

For general sets A ⊂ N, the corresponding statement is

true for ` = 2, 3, 4;

false for all ` ≥ 5.
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Digression: automatic generalised polynomials

Question: How to detect lack of Gowers uniformity?

Inverse Theorem for Gowers uniformity norms (Green, Tao & Ziegler (2012))

Let a(n) be a bounded sequence. Then the following are (essentially) equivalent:

1 a is not Gowers uniform of all orders;

2 a is correlated with a nilsequence; −→ we will not de�ne nilsequences

3 a is correlated with a bounded generalised polynomial.

De�nition: A generalised polynomial is a function built up from (standard)
polynomials, the fractional part function, addition and multiplication.
Example: f(n) =

{√
3{
√

2n2 + 1/7}2 + n{
√

5n3 + π}
}
.

Question: Are there any non-trivial sequences that are both automatic and given by
generalised polynomial formulae?

�Extreme case� when investigating uniformity of automatic sequences.

Alternatively, one can ask how simple a generalised polynomial sequence can be
from the point of view of computability, without being trivial.
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Digression: automatic generalised polynomials

Question: Are there non-trivial generalised polynomials that are automatic?

If bαn+ βc mod m is automatic then it is periodic, Allouche & Shallit (2003).

If a(n) is both automatic and a generalised polynomial, then
a = [periodic] + [almost everywhere zero], Byszewski & K. (2020).

If A ⊂ N is 2-automatic then either (i) A has much additive structure (contains a
�shifted IP set�), or (ii) looks like

{
2i : i ≥ 0

}
(�2-arid�).

If A ⊂ N is generalised polynomial and d(A) = 0, then A has very little additive
structure (no IP sets or their shifts), Byszewski & K. (2018).

If A ⊂ N is generalised polynomial and 2i ∈ A for many values of i (central set),
then there also are many (syndetic set) values of n such that 2in ∈ A for many
and values of i. K. (2020+).

Theorem (Byszewski & K.)

Let a(n) be a sequence and let k ≥ 2. Then the following are equivalent:

a(n) is both a generalised polynomial and a k-automatic sequence;

a(n) is eventually periodic.
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Thank you for your attention!
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