Automatic Sequences from the perspective of Additive Combinatorics

Jakub Konieczny

Hebrew University of Jerusalem (past) Université de Lyon (future) Jagiellonian University (secondary)

8th Polish Combinatorial Conference

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $+--+-++-++-++-++-++-++-++-\dots$

The Thue-Morse sequence (discovered by Prouhet) can be seen in many ways:

The Thue-Morse sequence (discovered by Prouhet) can be seen in many ways: • Explicit formula:

$$t(n) = \begin{cases} +1 & \text{ if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{ if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

The Thue-Morse sequence (discovered by Prouhet) can be seen in many ways: • Explicit formula:

$$t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$$

2 Automatic sequence:

The Thue-Morse sequence (discovered by Prouhet) can be seen in many ways: • Explicit formula:

$$t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$$

2 Automatic sequence:

< □ > < □ > < □ > < □ > < □ > = Ξ

2/19

8 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+1) = -t(n).

The Thue–Morse sequence (discovered by Prouhet) can be seen in many ways: • Explicit formula:

$$t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$$

2 Automatic sequence:

< □ > < □ > < □ > < □ > < □ > = Ξ

2/19

3 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+1) = -t(n).

4 Fixed point of a substitution: $+ \mapsto +-, \quad -\mapsto -+$.

The Thue–Morse sequence (discovered by Prouhet) can be seen in many ways: • Explicit formula:

$$t(n) = \begin{cases} +1 & \text{if } n \text{ is } evil \text{ (i.e., sum of binary digits is even),} \\ -1 & \text{if } n \text{ is } odious \text{ (i.e., sum of binary digits is odd).} \end{cases}$$

2 Automatic sequence:

3 Recurrence: t(0) = +1, t(2n) = t(n), t(2n+1) = -t(n).

(4) Fixed point of a substitution: $+ \mapsto +-, \quad -\mapsto -+.$

6 Formal power series: Let $t'(n) = \frac{1-t(n)}{2} \in \{0,1\}$ and $T(z) = \sum_{n=0}^{\infty} t'(n) z^n$. Then

$$z + (1+z)^2 T(z) + (1+z)^3 T(z)^2 = 0 \mod 2.$$

Question (Mauduit & Sarközy (1998))

Is the Thue–Morse sequence *pseudorandom* (in some meaningful sense)?

Question (Mauduit & Sarközy (1998))

Is the Thue-Morse sequence *pseudorandom* (in some meaningful sense)?

No! At least in some ways.

- **1** Linear subword complexity: $\# \{ w \in \{+1, -1\}^{\ell} : w \text{ appears in } t \} = O(\ell).$
- **2** # {n < N : t(n) = t(n+1)} $\simeq N/3 \neq N/2. \longrightarrow t(n) = t(n+1)$ iff $2 \nmid \nu_2(n+1)$

Question (Mauduit & Sarközy (1998))

Is the Thue-Morse sequence *pseudorandom* (in some meaningful sense)?

No! At least in some ways.

• Linear subword complexity: $\# \{ w \in \{+1, -1\}^{\ell} : w \text{ appears in } t \} = O(\ell).$

 9 # {n < N : t(n) = t(n + 1)} ≃ N/3 ≠ N/2. → t(n) = t(n + 1) iff 2 ∤ ν₂(n + 1)

 9 # {n < N : t(n) = t(n + 1) = t(n + 2)} = 0. → in general: t is cube-free

But in other ways, Yes!

•
$$\mathbb{E}_{n < N} t(n) = O(1/N)$$
 (not very hard). $\longrightarrow \mathbb{E}_{n < N}$ is shorthand for $\frac{1}{N} \sum_{n = 0}$

N - 1

3 / 19

イロト イロト イヨト イヨト 三日

Question (Mauduit & Sarközy (1998))

Is the Thue–Morse sequence *pseudorandom* (in some meaningful sense)?

No! At least in some ways.

• Linear subword complexity: $\# \{ w \in \{+1, -1\}^{\ell} : w \text{ appears in } t \} = O(\ell).$

2 $\# \{n < N : t(n) = t(n+1)\} \simeq N/3 \neq N/2. \longrightarrow t(n) = t(n+1) \text{ iff } 2 \nmid \nu_2(n+1)$ $\# \{n < N : t(n) = t(n+1) = t(n+2)\} = 0.$ \longrightarrow in general: t is cube-free

But in other ways, Yes!

- $\longrightarrow \underset{n < N}{\mathbb{E}}$ is shorthand for $\frac{1}{N} \sum_{n=0}^{N-1}$ $\bigoplus_{n < N} t(n) = O(1/N)$ (not very hard).
- **2** $\prod_{n < N} t(an + b) = O(N^{-c})$ with c > 0.

 \longrightarrow Gelfond (1968)

Question (Mauduit & Sarközy (1998))

Is the Thue-Morse sequence *pseudorandom* (in some meaningful sense)?

No! At least in some ways.

• Linear subword complexity: $\# \{ w \in \{+1, -1\}^{\ell} : w \text{ appears in } t \} = O(\ell).$

9 # {n < N : t(n) = t(n+1)} ≃ N/3 ≠ N/2. → t(n) = t(n+1) iff 2 ∤ ν₂(n+1) **9** # {n < N : t(n) = t(n+1) = t(n+2)} = 0. → in general: t is cube-free

But in other ways, Yes!

- $\begin{array}{l} \bullet \quad \underset{n < N}{\mathbb{E}} t(n) = O(1/N) \text{ (not very hard).} & \longrightarrow \underset{n < N}{\mathbb{E}} \text{ is shorthand for } \frac{1}{N} \sum_{n=0}^{N-1} \\ \bullet \quad \underset{n < N}{\mathbb{E}} t(an+b) = O(N^{-c}) \text{ with } c > 0. & \longrightarrow \text{ Gelfond (1968)} \\ \bullet \quad \underset{\alpha \in \mathbb{R}}{\sup} \left| \underset{n < N}{\mathbb{E}} t(n)e(n\alpha) \right| = O(N^{-c}) \text{ with } c > 0. & \longrightarrow \text{ shorthand: } e(\theta) = e^{2\pi i \theta} \end{array}$
 - <ロト < 部ト < 言ト < 言ト こ の へ () 3 / 19

Gelfond problems

• The Thue-Morse sequence does not correlate with the primes:

$$\mathop{\mathbb{E}}_{n < N} t(p_n) = O(N^{-c}) \text{ for some } c > 0,$$

where p_n is the *n*-th prime, Mauduit & Rivat (2010).

Gelfond problems

1 The Thue-Morse sequence does not correlate with the primes:

$$\mathop{\mathbb{E}}_{n < N} t(p_n) = O(N^{-c}) \text{ for some } c > 0,$$

where p_n is the *n*-th prime, Mauduit & Rivat (2010).

2 The Thue–Morse sequence does not correlate with the squares

$$\mathbb{E}_{n < N} t(n^2) = O(N^{-c}) \text{ for some } c > 0,$$

Mauduit & Rivat (2009). Moreover, $t(n^2)$ is normal (i.e., each subword appears with the "right" frequency) Drmota, Mauduit & Rivat (2013). **Open problem:** What about $t(n^3)$?

Gelfond problems

1 The Thue-Morse sequence does not correlate with the primes:

$$\mathop{\mathbb{E}}_{n < N} t(p_n) = O(N^{-c}) \text{ for some } c > 0,$$

where p_n is the *n*-th prime, Mauduit & Rivat (2010).

2 The Thue–Morse sequence does not correlate with the squares

$$\mathop{\mathbb{E}}_{n < N} t(n^2) = O(N^{-c}) \text{ for some } c > 0,$$

Mauduit & Rivat (2009). Moreover, $t(n^2)$ is normal (i.e., each subword appears with the "right" frequency) Drmota, Mauduit & Rivat (2013). **Open problem:** What about $t(n^3)$?

③ The Thue–Morse sequence does not correlate with Piatetski-Shapiro sequences:

$$\mathop{\mathbb{E}}_{n < N} t(\lfloor n^{\alpha} \rfloor) = O(N^{-c}) \text{ for some } c > 0,$$

where $1 < \alpha < 2$, Spiegelhofer (2020+). Also, t(n) has level of distribution 1.

Consider the set $T = \{n \in \mathbb{N} : t(n) = +1\}$. We are interested in additive properties of T, specifically:

Consider the set $T = \{n \in \mathbb{N} : t(n) = +1\}$. We are interested in additive properties of T, specifically:

• Pick $\ell \geq 3$. How many ℓ term arithmetic progressions are there in $T \cap [0, N)$, asymptotically as $N \to \infty$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへの

Consider the set $T = \{n \in \mathbb{N} : t(n) = +1\}$. We are interested in additive properties of T, specifically:

- Pick $\ell \geq 3$. How many ℓ term arithmetic progressions are there in $T \cap [0, N)$, asymptotically as $N \to \infty$?
- Random model suggests that the count of ℓ term arithmetic progressions in $T \cap [0, N)$ should be $\simeq N^2/(\ell 1)2^{\ell+1}$. Is this valid? With what error term?

Consider the set $T = \{n \in \mathbb{N} : t(n) = +1\}$. We are interested in additive properties of T, specifically:

- Pick $\ell \geq 3$. How many ℓ term arithmetic progressions are there in $T \cap [0, N)$, asymptotically as $N \to \infty$?
- Random model suggests that the count of ℓ term arithmetic progressions in $T \cap [0, N)$ should be $\simeq N^2/(\ell 1)2^{\ell+1}$. Is this valid? With what error term?
- More generally, pick a sequence $\epsilon_0, \ldots, \epsilon_{\ell-1} \in \{+1, -1\}$. How many pairs m, n are there with $0 \le n + im < N$ and $t(n + im) = \epsilon_i$ for all $0 \le i < \ell$, asymptotically as $N \to \infty$?

イロト イヨト イヨト イヨト 三日

Consider the set $T = \{n \in \mathbb{N} : t(n) = +1\}$. We are interested in additive properties of T, specifically:

- Pick $\ell \geq 3$. How many ℓ term arithmetic progressions are there in $T \cap [0, N)$, asymptotically as $N \to \infty$?
- Random model suggests that the count of ℓ term arithmetic progressions in $T \cap [0, N)$ should be $\simeq N^2/(\ell 1)2^{\ell+1}$. Is this valid? With what error term?
- More generally, pick a sequence $\epsilon_0, \ldots, \epsilon_{\ell-1} \in \{+1, -1\}$. How many pairs m, n are there with $0 \le n + im < N$ and $t(n + im) = \epsilon_i$ for all $0 \le i < \ell$, asymptotically as $N \to \infty$?
- Even more generally, pick a sequence of affine maps $A_0, A_1, \ldots, A_{\ell-1} : \mathbb{Z}^d \to \mathbb{Z}$. How many d-tuples $n_0, n_1, \ldots, n_{d-1}$ are there with $0 \le A_i(n_0, \ldots, n_{d-1}) < N$ and $t(A_i(n_0, \ldots, n_{d-1})) = \epsilon_i$ for all $0 \le i < \ell$, asymptotically as $N \to \infty$?

Problem: Let $A \subset [N]$, $\#A = \alpha N$ and $\ell \in \mathbb{N}$. How many ℓ -term arithmetic progressions in A? Is there at least one?

 $\longrightarrow [N] := \{0, 1, \dots, N-1\};$ we identify $[N] \simeq \mathbb{Z}/N\mathbb{Z}$ and assume N is prime.

Problem: Let $A \subset [N]$, $\#A = \alpha N$ and $\ell \in \mathbb{N}$. How many ℓ -term arithmetic progressions in A? Is there at least one?

 $\longrightarrow [N] := \{0, 1, \dots, N-1\};$ we identify $[N] \simeq \mathbb{Z}/N\mathbb{Z}$ and assume N is prime.

Fourier expansion:

$$1_A(n) = \sum_{\xi < N} \hat{1}_A(\xi) e\left(\frac{\xi n}{N}\right), \text{ where } \hat{1}_A(\xi) = \mathop{\mathbb{E}}_{n < N} 1_A(n) e\left(\frac{-\xi n}{N}\right)$$

Note that $\hat{1}_A(0) = \alpha$.

Problem: Let $A \subset [N]$, $\#A = \alpha N$ and $\ell \in \mathbb{N}$. How many ℓ -term arithmetic progressions in A? Is there at least one?

 $\longrightarrow [N] := \{0, 1, \dots, N-1\};$ we identify $[N] \simeq \mathbb{Z}/N\mathbb{Z}$ and assume N is prime.

Fourier expansion:

$$1_A(n) = \sum_{\xi < N} \hat{1}_A(\xi) e\left(\frac{\xi n}{N}\right), \text{ where } \hat{1}_A(\xi) = \underset{n < N}{\mathbb{E}} 1_A(n) e\left(\frac{-\xi n}{N}\right)$$

Note that $\hat{1}_A(0) = \alpha$.

Motto: A is uniform
$$\iff \hat{1}_A(\xi)$$
 are small for $\xi \neq 0$.

Lemma

Suppose that $|\hat{1}_A(\xi)| < \varepsilon$ for all $\xi \neq 0$. Then

$$\#\{(n,m)\in [N]^2 : n,n+m,n+2m\in A\} = \frac{\alpha^3}{4}N^2 + O(\varepsilon N^2).$$

Problem: Let $A \subset [N]$, $\#A = \alpha N$ and $\ell \in \mathbb{N}$. How many ℓ -term arithmetic progressions in A? Is there at least one?

 $\longrightarrow [N] := \{0, 1, \dots, N-1\};$ we identify $[N] \simeq \mathbb{Z}/N\mathbb{Z}$ and assume N is prime.

Fourier expansion:

$$1_A(n) = \sum_{\xi < N} \hat{1}_A(\xi) e\left(\frac{\xi n}{N}\right), \text{ where } \hat{1}_A(\xi) = \underset{n < N}{\mathbb{E}} 1_A(n) e\left(\frac{-\xi n}{N}\right)$$

Note that $\hat{1}_A(0) = \alpha$.

Motto: A is uniform
$$\iff \hat{1}_A(\xi)$$
 are small for $\xi \neq 0$.

Lemma

Suppose that $|\hat{1}_A(\xi)| < \varepsilon$ for all $\xi \neq 0$. Then

$$\#\{(n,m) \in [N]^2 : n, n+m, n+2m \in A\} = \frac{\alpha^3}{4}N^2 + O(\varepsilon N^2).$$

Corollary: The number of 3-term APs in $\{n \in [N] : t(n) = +1\}$ is $\simeq N^2/32$.

Fact (Fourier analysis is not enough)

There exist $A \subset [N]$, $\#A = \alpha N$ such that $\hat{1}_A(\xi) \simeq 0$ for $\xi \neq 0$ but the number of 4-term APs in A is not $\simeq \alpha^4 N^2/6$ (like for a random set).

Example: $A = \{n \in [N] : 0 \le \{n^2\sqrt{2}\} < \alpha\}. \longrightarrow \{x\} = x - \lfloor x \rfloor$

Fact (Fourier analysis is not enough)

There exist $A \subset [N]$, $\#A = \alpha N$ such that $\hat{1}_A(\xi) \simeq 0$ for $\xi \neq 0$ but the number of 4-term APs in A is not $\simeq \alpha^4 N^2/6$ (like for a random set).

Example: $A = \{n \in [N] : 0 \le \{n^2\sqrt{2}\} < \alpha\}. \longrightarrow \{x\} = x - \lfloor x \rfloor$

Higher order Fourier analysis

Fact (Fourier analysis is not enough)

There exist $A \subset [N]$, $\#A = \alpha N$ such that $\hat{1}_A(\xi) \simeq 0$ for $\xi \neq 0$ but the number of 4-term APs in A is not $\simeq \alpha^4 N^2/6$ (like for a random set).

Example: $A = \{n \in [N] : 0 \le \{n^2\sqrt{2}\} < \alpha\}. \longrightarrow \{x\} = x - \lfloor x \rfloor$

Higher order Fourier analysis

Definition (Gowers norm)

Fix $s \ge 1$. Let $f \colon [N] \to \mathbb{R}$. Then $||f||_{U^s[N]} \ge 0$ is defined by:

$$||f||_{U^{s}[N]}^{2^{s}} = \mathbb{E}\prod_{\mathbf{n}}\prod_{\omega\in\{0,1\}^{s}} f(n_{0}+\omega_{1}n_{1}+\ldots\omega_{s}n_{s}),$$

where the average is taken over all parallelepipeds in [N], i.e., over all $\mathbf{n} = (n_0, \ldots, n_s) \in \mathbb{Z}^{s+1}$ such that $n_0 + \omega_1 n_1 + \ldots \omega_s n_s \in [N]$ for all $\omega \in \{0, 1\}^s$.

 \longrightarrow for \mathbb{C} -valued functions: conjugate the terms with $\omega_1 + \omega_2 + \cdots + \omega_s$ odd

Fact (Fourier analysis is not enough)

There exist $A \subset [N]$, $\#A = \alpha N$ such that $\hat{1}_A(\xi) \simeq 0$ for $\xi \neq 0$ but the number of 4-term APs in A is not $\simeq \alpha^4 N^2/6$ (like for a random set).

Example: $A = \{n \in [N] : 0 \le \{n^2\sqrt{2}\} < \alpha\}. \longrightarrow \{x\} = x - \lfloor x \rfloor$

Higher order Fourier analysis

Definition (Gowers norm)

Fix $s \ge 1$. Let $f \colon [N] \to \mathbb{R}$. Then $||f||_{U^s[N]} \ge 0$ is defined by:

$$||f||_{U^{s}[N]}^{2^{s}} = \mathbb{E}_{\mathbf{n}} \prod_{\omega \in \{0,1\}^{s}} f(n_{0} + \omega_{1}n_{1} + \dots \omega_{s}n_{s}),$$

where the average is taken over all parallelepipeds in [N], i.e., over all $\mathbf{n} = (n_0, \ldots, n_s) \in \mathbb{Z}^{s+1}$ such that $n_0 + \omega_1 n_1 + \ldots \omega_s n_s \in [N]$ for all $\omega \in \{0, 1\}^s$.

 \longrightarrow for \mathbb{C} -valued functions: conjugate the terms with $\omega_1 + \omega_2 + \cdots + \omega_s$ odd

Motto: A is uniform of order $s \iff \|1_A - \alpha 1_{[N]}\|_{U^s[N]}$ is small.

Higher order Fourier analysis: Basic properties

Facts:

- **0** $||f||_{U^s[N]}$ is well-defined for $s \ge 1$, i.e., the average on the RHS is ≥ 0
- **3** $||f||_{U^1[N]} \ll ||f||_{U^2[N]} \ll ||f||_{U^3[N]} \ll \dots$
- $\texttt{ 0 } \|f+g\|_{U^s[N]} \leq \|f\|_{U^s[N]} + \|g\|_{U^s[N]} \text{ and } \|\lambda f\|_{U^s[N]} = |\lambda| \, \|f\|_{U^s[N]}$

Higher order Fourier analysis: Basic properties

Facts:

- $0 \ \|f\|_{U^s[N]} \text{ is well-defined for } s \geq 1, \text{ i.e., the average on the RHS is} \geq 0$
- **3** $||f||_{U^1[N]} \ll ||f||_{U^2[N]} \ll ||f||_{U^3[N]} \ll \dots$

Example

If
$$p \in \mathbb{R}[x]$$
, $f(n) = e(p(n))$, deg $p = s$ then $||f||_{U^s[N]} \simeq 0$ but $||f||_{U^{s+1}[N]} = 1$.
 \longrightarrow assume here that the leading coefficient of p is reasonable

Higher order Fourier analysis: Basic properties

Facts:

- $0 \ \|f\|_{U^s[N]} \text{ is well-defined for } s \geq 1, \text{ i.e., the average on the RHS is} \geq 0$
- **3** $||f||_{U^1[N]} \ll ||f||_{U^2[N]} \ll ||f||_{U^3[N]} \ll \dots$

Example

If $p \in \mathbb{R}[x]$, f(n) = e(p(n)), deg p = s then $||f||_{U^s[N]} \simeq 0$ but $||f||_{U^{s+1}[N]} = 1$. \longrightarrow assume here that the leading coefficient of p is reasonable

Theorem (Generalised von Neumann Theorem)

Fix $s \ge 1$. If $A \subset [N]$, $\#A = \alpha N$ and $\|1_A - \alpha 1_{[N]}\|_{U^s[N]} \le \varepsilon$, then A contains as many (s+1)-term APs as a random set of the same size, up to an error of size ε :

$$\#\{(n,m) \in [N]^2 : n, n+m, \dots, n+sm \in A\} = \alpha^s N^2/2s + O(\varepsilon N^2).$$

Gowers uniform sequences

Let μ denote the Möbius function

$$\mu(n) = \begin{cases} (-1)^k & \text{if } n = p_1 \dots p_k \text{ where } p_1, \dots, p_k \text{ are distinct primes,} \\ 0 & \text{if } n \text{ is divisible by a square.} \end{cases}$$

Recall that μ is multiplicative, meaning that $\mu(mn) = \mu(m)\mu(n)$ if gcd(m, n) = 1.

Gowers uniform sequences

Let μ denote the Möbius function

 $\mu(n) = \begin{cases} (-1)^k & \text{if } n = p_1 \dots p_k \text{ where } p_1, \dots, p_k \text{ are distinct primes,} \\ 0 & \text{if } n \text{ is divisible by a square.} \end{cases}$

Recall that μ is multiplicative, meaning that $\mu(mn) = \mu(m)\mu(n)$ if gcd(m, n) = 1.

Theorem (Green & Tao (2008+2012))

Fix $s \ge 2$. The Möbius function is Gowers uniform of order s:

 $\|\mu\|_{U^s[N]} \to 0 \text{ as } N \to \infty.$

Hence, the primes contain many arithmetic progressions of length s + 1. \rightarrow Vast over-simplification, quantitative bounds needed, etc.

Gowers uniform sequences

Let μ denote the Möbius function

 $\mu(n) = \begin{cases} (-1)^k & \text{if } n = p_1 \dots p_k \text{ where } p_1, \dots, p_k \text{ are distinct primes,} \\ 0 & \text{if } n \text{ is divisible by a square.} \end{cases}$

Recall that μ is multiplicative, meaning that $\mu(mn) = \mu(m)\mu(n)$ if gcd(m, n) = 1.

Theorem (Green & Tao (2008+2012))

Fix $s \ge 2$. The Möbius function is Gowers uniform of order s:

$$\|\mu\|_{U^s[N]} \to 0 \text{ as } N \to \infty.$$

Hence, the primes contain many arithmetic progressions of length s + 1. \rightarrow Vast over-simplification, quantitative bounds needed, etc.

Theorem (Frantzikinakis & Host (2017)) Let ν be a (bounded) multiplicative function and $s \ge 2$. Then $\|\nu\|_{U^s[N]} \to 0$ as $N \to \infty$ if and only if $\|\nu\|_{U^2[N]} \to 0$ as $N \to \infty$.

Higher order Fourier analysis & Thue–Morse

Recall: $t(n) = \begin{cases} +1 \text{ if the sum of binary digits of } n \text{ is even,} \\ -1 \text{ if the sum of binary digits of } n \text{ is odd.} \end{cases}$

Higher order Fourier analysis & Thue–Morse

Recall: $t(n) = \begin{cases} +1 \text{ if the sum of binary digits of } n \text{ is even,} \\ -1 \text{ if the sum of binary digits of } n \text{ is odd.} \end{cases}$

Theorem (K. (2019))

Fix $s \geq 1$. There exists $c = c_s > 0$ such that $||t||_{U^s[N]} \ll N^{-c}$.

Higher order Fourier analysis & Thue–Morse

Recall: $t(n) = \begin{cases} +1 \text{ if the sum of binary digits of } n \text{ is even,} \\ -1 \text{ if the sum of binary digits of } n \text{ is odd.} \end{cases}$

Theorem (K. (2019))

Fix
$$s \ge 1$$
. There exists $c = c_s > 0$ such that $||t||_{U^s[N]} \ll N^{-c}$.

Corollary

Fix
$$s \ge 1$$
 and let $c = c_s$ be as above. Then for any $\epsilon_i \in \{+1, -1\}, (0 \le i \le s)$

$$\#\{(n,m) : n + im < N \text{ and } t(n + im) = \epsilon_i \text{ for } 0 \le i \le s\} = \frac{N^2}{2^{s+2}s} + O(N^{2-c}).$$

In particular, the number of (s + 1)-term arithmetic progressions contained in the set $\{n < N : t(n) = +1\}$ is $N^2/2^{s+2}s + O(N^{2-c})$.

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへ(~ 10 / 19

Higher order Fourier analysis & Thue–Morse

Recall: $t(n) = \begin{cases} +1 \text{ if the sum of binary digits of } n \text{ is even,} \\ -1 \text{ if the sum of binary digits of } n \text{ is odd.} \end{cases}$

Theorem (K. (2019))

Fix
$$s \ge 1$$
. There exists $c = c_s > 0$ such that $||t||_{U^s[N]} \ll N^{-c}$.

Corollary

Fix $s \ge 1$ and let $c = c_s$ be as above. Then for any $\epsilon_i \in \{+1, -1\}, (0 \le i \le s)$

$$\#\{(n,m) : n + im < N \text{ and } t(n + im) = \epsilon_i \text{ for } 0 \le i \le s\} = \frac{N^2}{2^{s+2}s} + O(N^{2-c}).$$

In particular, the number of (s + 1)-term arithmetic progressions contained in the set $\{n < N : t(n) = +1\}$ is $N^2/2^{s+2}s + O(N^{2-c})$.

• Same holds for the Rudin–Shapiro sequence (count appearances of the pattern 11 instead of 1) as well as other pattern-counting sequences.

Higher order Fourier analysis & k-multiplicative sequences

Definition

Fix $k \geq 2$. A sequence $f \colon \mathbb{N} \to \mathbb{C}$ is k-multiplicative if

f(n+m) = f(n)f(m) for all n, m s.t. $m < k^i, k^i | n$ for some i.

Higher order Fourier analysis & k-multiplicative sequences

Definition

Fix $k \geq 2$. A sequence $f \colon \mathbb{N} \to \mathbb{C}$ is k-multiplicative if

f(n+m) = f(n)f(m) for all n, m s.t. $m < k^i, k^i | n$ for some i.

Example

The Thue–Morse sequence t(n) is 2-multiplicative. More generally, let

 $s_k(n) =$ sum of digits of n in base k.

Then $e(\alpha s_k(n))$ is k-multiplicative for any $\alpha \in \mathbb{R}$.

 $\longrightarrow e(\theta) = e^{2\pi i \theta}$

Higher order Fourier analysis & k-multiplicative sequences

Definition

Fix $k \geq 2$. A sequence $f \colon \mathbb{N} \to \mathbb{C}$ is k-multiplicative if

f(n+m) = f(n)f(m) for all n, m s.t. $m < k^i, k^i | n$ for some i.

Example

The Thue–Morse sequence t(n) is 2-multiplicative. More generally, let

 $s_k(n) =$ sum of digits of n in base k.

Then $e(\alpha s_k(n))$ is k-multiplicative for any $\alpha \in \mathbb{R}$.

 $\longrightarrow e(\theta) = e^{2\pi i \theta}$

Theorem (Fan & K. (2019))

Let f be a bounded k-multiplicative function and $s \ge 2$. Then

 $||f||_{U^s[N]} \to 0 \text{ as } N \to \infty \text{ if and only if } ||f||_{U^2[N]} \to 0 \text{ as } N \to \infty.$

<ロト < 部ト < 言ト < 言ト 言の のの 11/19

< □ > < ⑦ > < ≧ > < ≧ > ≧ ♪ うへで 12 / 19

Some notation: We let k denote the base in which we work. \rightarrow e.g. k = 10, k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n. \longrightarrow no leading zeros

イロト イヨト イヨト イヨト 三日

Some notation: We let k denote the base in which we work. \rightarrow e.g. k = 10, k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n. \longrightarrow no leading zeros
- A finite k-automaton consists of:
 - a finite set of states S with a distinguished initial state s₀;

 start

Some notation: We let k denote the base in which we work. \rightarrow e.g. k = 10, k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n. \longrightarrow no leading zeros
- A finite k-automaton consists of:
 - a finite set of states S with a distinguished initial state s_0 ;
 - a transition function $\delta \colon S \times \Sigma_k \to S;$

(日) (종) (종) (종) (종)

Some notation: We let k denote the base in which we work. \rightarrow e.g. k = 10, k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n. \longrightarrow no leading zeros
- A finite k-automaton consists of:
 - a finite set of states S with a distinguished initial state s_0 ;
 - a transition function $\delta \colon S \times \Sigma_k \to S;$
 - an output function $\tau \colon S \to \mathbb{C}$.

イロト イヨト イヨト イヨト

Some notation: We let k denote the base in which we work. \rightarrow e.g. k = 10, k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n. \longrightarrow no leading zeros
- A finite k-automaton consists of:
 - a finite set of states S with a distinguished initial state s₀;
 - a transition function $\delta \colon S \times \Sigma_k \to S;$
 - an output function $\tau \colon S \to \mathbb{C}$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$;
- The sequence computed by the automaton is given by $a(n) = \tau (\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\# \text{ of } 11 \text{ in } (n)_2}$.

イロト イヨト イヨト イヨト 三国

Some notation: We let k denote the base in which we work. \rightarrow e.g. k = 10, k = 2

- $\Sigma_k = \{0, 1, \dots, k-1\}$, the set of digits in base k;
- Σ_k^* is the set of words over Σ_k , monoid with concatenation;
- for $n \in \mathbb{N}$, $(n)_k \in \Sigma_k^*$ is the base-k expansion of n. \longrightarrow no leading zeros
- A finite k-automaton consists of:
 - a finite set of states S with a distinguished initial state s₀;
 - a transition function $\delta \colon S \times \Sigma_k \to S;$
 - an output function $\tau \colon S \to \mathbb{C}$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_k^*$ with $\delta(s, uv) = \delta(\delta(s, u), v)$;
- The sequence computed by the automaton is given by $a(n) = \tau (\delta(s_0, (n)_k))$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\text{# of 11 in } (n)_2}$.

Motto: Automatic \iff Computable by a finite device.

Let $a : \mathbb{N} \to \Omega$ be a sequence. Then a is k-automatic if and only if it satisfies any/all of the following equivalent conditions:

Let $a : \mathbb{N} \to \Omega$ be a sequence. Then a is k-automatic if and only if it satisfies any/all of the following equivalent conditions:

1 There exists a finite k-automaton that computes a.

Let $a : \mathbb{N} \to \Omega$ be a sequence. Then a is k-automatic if and only if it satisfies any/all of the following equivalent conditions:

1 There exists a finite k-automaton that computes a.

2 The k-kernel $\mathcal{N}_k(a)$ of a is finite, where

$$\mathcal{N}_k(a) = \left\{ a(k^t n + r) : t \in \mathbb{N}, \ 0 \le r < k^t \right\}.$$

Let $a \colon \mathbb{N} \to \Omega$ be a sequence. Then a is k-automatic if and only if it satisfies any/all of the following equivalent conditions:

- 1 There exists a finite k-automaton that computes a.
- **2** The k-kernel $\mathcal{N}_k(a)$ of a is finite, where

$$\mathcal{N}_k(a) = \{ a(k^t n + r) : t \in \mathbb{N}, \ 0 \le r < k^t \}.$$

3 The sequence *a* is the letter-to-letter coding of a fixed point of a *k*-uniform morphism on the monoid of words over some finite alphabet.

Let $a : \mathbb{N} \to \Omega$ be a sequence. Then a is k-automatic if and only if it satisfies any/all of the following equivalent conditions:

- 1 There exists a finite k-automaton that computes a.
- **2** The k-kernel $\mathcal{N}_k(a)$ of a is finite, where

$$\mathcal{N}_k(a) = \left\{ a(k^t n + r) : t \in \mathbb{N}, \ 0 \le r < k^t \right\}.$$

- 0 The sequence *a* is the letter-to-letter coding of a fixed point of a *k*-uniform morphism on the monoid of words over some finite alphabet.
- (Applicable if k is a prime and Ω ⊂ F where F is a field of characteristic k.) The formal power series F(z) = ∑_{n=0}[∞] a(n)zⁿ ∈ F[[z]] is algebraic over F(z).

Let $a \colon \mathbb{N} \to \Omega$ be a sequence. Then a is k-automatic if and only if it satisfies any/all of the following equivalent conditions:

1 There exists a finite k-automaton that computes a.

2 The k-kernel $\mathcal{N}_k(a)$ of a is finite, where

$$\mathcal{N}_k(a) = \left\{ a(k^t n + r) : t \in \mathbb{N}, \ 0 \le r < k^t \right\}.$$

- **③** The sequence a is the letter-to-letter coding of a fixed point of a k-uniform morphism on the monoid of words over some finite alphabet.
- (Applicable if k is a prime and Ω ⊂ F where F is a field of characteristic k.) The formal power series F(z) = ∑_{n=0}[∞] a(n)zⁿ ∈ F[[z]] is algebraic over F(z).

Remark

The many alternative definitions create connections to combinatorics (graph theory, combinatorics on words), computer science, dynamics (symbolic systems), algebra, logic (Büchi arithmetic), etc.

Uniformity of automatic sequences

Question

- Which among k-automatic sequences are Gowers uniform?
- If a k-automatic sequence is uniform of order 2, must it be uniform of all orders?

Uniformity of automatic sequences

Question

- Which among k-automatic sequences are Gowers uniform?
- If a k-automatic sequence is uniform of order 2, must it be uniform of all orders?

Example

The following sequences are 2-automatic and not Gowers uniform:

- periodic sequences like 1 or $(-1)^n$;
- \mathfrak{S} slowly varying sequences like $\lfloor \log_2(n) \rfloor \mod 2$.

 $\longrightarrow 2^{\nu_2(n)} || n$

 \longrightarrow length of expansion

Uniformity of automatic sequences

Question

- Which among k-automatic sequences are Gowers uniform?
- If a k-automatic sequence is uniform of order 2, must it be uniform of all orders?

Example

The following sequences are 2-automatic and not Gowers uniform:

- periodic sequences like 1 or $(-1)^n$;
- **3** slowly varying sequences like $\lfloor \log_2(n) \rfloor \mod 2$.

 $\longrightarrow 2^{\nu_2(n)} || n$ $\longrightarrow \text{length of expansion}$

Theorem (Byszewski, K. & Müllner (2020+))

Any automatic sequence has a decomposition $a = a_{str} + a_{uni}$, where a_{uni} is highly Gowers uniform and a_{str} is a combination of sequences of the above types.

Arithmetic regularity lemma for automatic sequences

Definition: A k-automatic sequence a(n) is forwards synchronising if there exists a string of base-k digits $w \in \Sigma_k^*$ such that

$$a([xwy]_k) = a([x'wy]_k)$$

for all strings of base-k digits $x, x', y \in \Sigma_k^*$. Accordingly, a(n) is backwards synchronising if there exists $w \in \Sigma_k^*$ such that

$$a([xwy]_k) = a([xwy']_k)$$

for all strings of base-k digits $x, y, y' \in \Sigma_k^*$. $\longrightarrow [z]_k = \text{integer whose expansion is } z$

Arithmetic regularity lemma for automatic sequences

Definition: A k-automatic sequence a(n) is forwards synchronising if there exists a string of base-k digits $w \in \Sigma_k^*$ such that

$$a([xwy]_k) = a([x'wy]_k)$$

for all strings of base-k digits $x, x', y \in \Sigma_k^*$. Accordingly, a(n) is backwards synchronising if there exists $w \in \Sigma_k^*$ such that

$$a([xwy]_k) = a([xwy']_k)$$

for all strings of base-k digits $x, y, y' \in \Sigma_k^*$. $\longrightarrow [z]_k = \text{integer whose expansion is } z$

Theorem (Byszewski, K. & Müllner (2020+))

Let a be an automatic sequence. Then there is a decomposition $a = a_{str} + a_{uni}$ where

- **1** for each $s \ge 2$ there exists $c_s > 0$ such that $||a_{uni}||_{U^s[N]} \ll N^{-c_s}$;
- **2** there exist automatic sequences b_{per} , b_{fs} , b_{bs} that are periodic, forwards synchronising and backwards synchronising respectively and a function F such that $a_{str}(n) = F(b_{per}(n), b_{fs}(n), b_{bs}(n))$.

< □ > < □ > < □ > < □ > < □ > = Ξ

Arithmetic regularity lemma for automatic sequences

Definition: A k-automatic sequence a(n) is forwards synchronising if there exists a string of base-k digits $w \in \Sigma_k^*$ such that

$$a([xwy]_k) = a([x'wy]_k)$$

for all strings of base-k digits $x, x', y \in \Sigma_k^*$. Accordingly, a(n) is backwards synchronising if there exists $w \in \Sigma_k^*$ such that

$$a([xwy]_k) = a([xwy']_k)$$

for all strings of base-k digits $x, y, y' \in \Sigma_k^*$. $\longrightarrow [z]_k = \text{integer whose expansion is } z$

Theorem (Byszewski, K. & Müllner (2020+))

Let a be an automatic sequence. Then there is a decomposition $a = a_{str} + a_{uni}$ where

• for each $s \ge 2$ there exists $c_s > 0$ such that $||a_{\text{uni}}||_{U^s[N]} \ll N^{-c_s}$;

2) there exist automatic sequences b_{per} , b_{fs} , b_{bs} that are periodic, forwards synchronising and backwards synchronising respectively and a function F such that $a_{str}(n) = F(b_{per}(n), b_{fs}(n), b_{bs}(n))$.

• This is a distant relative of the celebrated Arithmetic Regularity Lemma, which gives a similar decomposition for an arbitrary sequence, albeit with less well-behaved components, Green & Tao, (2010).

4 ロト 4 日 ト 4 日 ト 4 日 ト 19

Corollary

Let a be a k-automatic sequence with $||a||_{U^2[N]} \to 0$ as $N \to \infty$. Then for each $s \ge 2$ there exists $c_s > 0$ such that $||a||_{U^s[N]} \ll N^{-c_s}$.

イロト イヨト イヨト イヨト 一日

Corollary

Let a be a k-automatic sequence with $||a||_{U^2[N]} \to 0$ as $N \to \infty$. Then for each $s \ge 2$ there exists $c_s > 0$ such that $||a||_{U^s[N]} \ll N^{-c_s}$.

We call a set $A \subset \mathbb{N}$ automatic if 1_A is automatic.

Corollary

Let $\ell \geq 2$ and let $A \subset \mathbb{N}$ an automatic set with $\lim_{N \to \infty} \frac{1}{N} \# A \cap [0, N) = \alpha > 0$. Then there exists $\delta > 0$ such that for each N > 0 there are $\geq \delta N$ values of $m \leq N$ such that $A \cap [0, N)$ contains $\frac{99}{100} \alpha^{\ell} N$ arithmetic progressions with step m.

Corollary

Let a be a k-automatic sequence with $||a||_{U^2[N]} \to 0$ as $N \to \infty$. Then for each $s \ge 2$ there exists $c_s > 0$ such that $||a||_{U^s[N]} \ll N^{-c_s}$.

We call a set $A \subset \mathbb{N}$ automatic if 1_A is automatic.

Corollary

Let $\ell \geq 2$ and let $A \subset \mathbb{N}$ an automatic set with $\lim_{N\to\infty} \frac{1}{N} \# A \cap [0, N) = \alpha > 0$. Then there exists $\delta > 0$ such that for each N > 0 there are $\geq \delta N$ values of $m \leq N$ such that $A \cap [0, N)$ contains $\frac{99}{100} \alpha^{\ell} N$ arithmetic progressions with step m.

For general sets $A \subset \mathbb{N}$, the corresponding statement is

- true for $\ell = 2, 3, 4;$
- false for all $\ell \geq 5$.

Question: How to detect lack of Gowers uniformity?

Question: How to detect lack of Gowers uniformity?

Inverse Theorem for Gowers uniformity norms (Green, Tao & Ziegler (2012))

Let a(n) be a bounded sequence. Then the following are (essentially) equivalent:

- \bullet a is not Gowers uniform of all orders;
- **2** a is correlated with a nilsequence;

3 *a* is correlated with a bounded generalised polynomial.

 \longrightarrow we will *not* define nilsequences

イロト イヨト イヨト イヨト 三国

Question: How to detect lack of Gowers uniformity?

Inverse Theorem for Gowers uniformity norms (Green, Tao & Ziegler (2012))

Let a(n) be a bounded sequence. Then the following are (essentially) equivalent:

- \bullet a is not Gowers uniform of all orders;
- **2** a is correlated with a nilsequence;

 \longrightarrow we will *not* define nilsequences

 $\mathbf{8}$ a is correlated with a bounded generalised polynomial.

Definition: A generalised polynomial is a function built up from (standard) polynomials, the fractional part function, addition and multiplication.

Question: How to detect lack of Gowers uniformity?

Inverse Theorem for Gowers uniformity norms (Green, Tao & Ziegler (2012))

Let a(n) be a bounded sequence. Then the following are (essentially) equivalent:

- \bullet a is not Gowers uniform of all orders;
- **2** a is correlated with a nilsequence;

 \longrightarrow we will *not* define nilsequences

イロト イヨト イヨト イヨト 三日

17 / 19

 $\mathbf{8}$ a is correlated with a bounded generalised polynomial.

Definition: A generalised polynomial is a function built up from (standard) polynomials, the fractional part function, addition and multiplication. **Example:** $f(n) = \{\sqrt{3}\{\sqrt{2}n^2 + 1/7\}^2 + n\{\sqrt{5}n^3 + \pi\}\}.$

Question: How to detect lack of Gowers uniformity?

Inverse Theorem for Gowers uniformity norms (Green, Tao & Ziegler (2012))

Let a(n) be a bounded sequence. Then the following are (essentially) equivalent:

- \bullet a is not Gowers uniform of all orders;
- **2** a is correlated with a nilsequence;

 \longrightarrow we will *not* define nilsequences

イロト イヨト イヨト イヨト 三日

17 / 19

 $\boldsymbol{3}$ a is correlated with a bounded generalised polynomial.

Definition: A generalised polynomial is a function built up from (standard) polynomials, the fractional part function, addition and multiplication. **Example:** $f(n) = \{\sqrt{3}\{\sqrt{2}n^2 + 1/7\}^2 + n\{\sqrt{5}n^3 + \pi\}\}.$

Question: Are there any non-trivial sequences that are both automatic and given by generalised polynomial formulae?

Question: How to detect lack of Gowers uniformity?

Inverse Theorem for Gowers uniformity norms (Green, Tao & Ziegler (2012))

Let a(n) be a bounded sequence. Then the following are (essentially) equivalent:

- (1) a is not Gowers uniform of all orders;
- **2** a is correlated with a nilsequence;

 \longrightarrow we will *not* define nilsequences

 $\boldsymbol{3}$ a is correlated with a bounded generalised polynomial.

Definition: A generalised polynomial is a function built up from (standard) polynomials, the fractional part function, addition and multiplication. **Example:** $f(n) = \{\sqrt{3}\{\sqrt{2}n^2 + 1/7\}^2 + n\{\sqrt{5}n^3 + \pi\}\}.$

Question: Are there any non-trivial sequences that are both automatic and given by generalised polynomial formulae?

- "Extreme case" when investigating uniformity of automatic sequences.
- Alternatively, one can ask how simple a generalised polynomial sequence can be from the point of view of computability, without being trivial.

Question: Are there non-trivial generalised polynomials that are automatic?

Question: Are there non-trivial generalised polynomials that are automatic?

• If $\lfloor \alpha n + \beta \rfloor$ mod m is automatic then it is periodic, Allouche & Shallit (2003).

Question: Are there non-trivial generalised polynomials that are automatic?

• If $\lfloor \alpha n + \beta \rfloor$ mod m is automatic then it is periodic, Allouche & Shallit (2003).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

18 / 19

• If a(n) is both automatic and a generalised polynomial, then a = [periodic] + [almost everywhere zero], Byszewski & K. (2020).

Question: Are there non-trivial generalised polynomials that are automatic?

- If $\lfloor \alpha n + \beta \rfloor$ mod m is automatic then it is periodic, Allouche & Shallit (2003).
- If a(n) is both automatic and a generalised polynomial, then a = [periodic] + [almost everywhere zero], Byszewski & K. (2020).
- If A ⊂ N is 2-automatic then either (i) A has much additive structure (contains a "shifted IP set"), or (ii) looks like {2ⁱ : i ≥ 0} ("2-arid").

Question: Are there non-trivial generalised polynomials that are automatic?

- If $\lfloor \alpha n + \beta \rfloor$ mod m is automatic then it is periodic, Allouche & Shallit (2003).
- If a(n) is both automatic and a generalised polynomial, then a = [periodic] + [almost everywhere zero], Byszewski & K. (2020).
- If A ⊂ N is 2-automatic then either (i) A has much additive structure (contains a "shifted IP set"), or (ii) looks like {2ⁱ : i ≥ 0} ("2-arid").
- If $A \subset \mathbb{N}$ is generalised polynomial and d(A) = 0, then A has very little additive structure (no IP sets or their shifts), Byszewski & K. (2018).

Question: Are there non-trivial generalised polynomials that are automatic?

- If $\lfloor \alpha n + \beta \rfloor$ mod m is automatic then it is periodic, Allouche & Shallit (2003).
- If a(n) is both automatic and a generalised polynomial, then a = [periodic] + [almost everywhere zero], Byszewski & K. (2020).
- If A ⊂ N is 2-automatic then either (i) A has much additive structure (contains a "shifted IP set"), or (ii) looks like {2ⁱ : i ≥ 0} ("2-arid").
- If $A \subset \mathbb{N}$ is generalised polynomial and d(A) = 0, then A has very little additive structure (no IP sets or their shifts), Byszewski & K. (2018).
- If $A \subset \mathbb{N}$ is generalised polynomial and $2^i \in A$ for many values of i (central set), then there also are many (syndetic set) values of n such that $2^i n \in A$ for many and values of i. K. (2020+).

Question: Are there non-trivial generalised polynomials that are automatic?

- If $\lfloor \alpha n + \beta \rfloor$ mod m is automatic then it is periodic, Allouche & Shallit (2003).
- If a(n) is both automatic and a generalised polynomial, then a = [periodic] + [almost everywhere zero], Byszewski & K. (2020).
- If A ⊂ N is 2-automatic then either (i) A has much additive structure (contains a "shifted IP set"), or (ii) looks like {2ⁱ : i ≥ 0} ("2-arid").
- If $A \subset \mathbb{N}$ is generalised polynomial and d(A) = 0, then A has very little additive structure (no IP sets or their shifts), Byszewski & K. (2018).
- If A ⊂ N is generalised polynomial and 2ⁱ ∈ A for many values of i (central set), then there also are many (syndetic set) values of n such that 2ⁱn ∈ A for many and values of i. K. (2020+).

Theorem (Byszewski & K.)

Let a(n) be a sequence and let $k \ge 2$. Then the following are equivalent:

- a(n) is both a generalised polynomial and a k-automatic sequence;
- a(n) is eventually periodic.

THANK YOU FOR YOUR ATTENTION!

E