Automatic Sequences FROM THE PERSPECTIVE OF Additive Combinatorics

Jakub Konieczny
Hebrew University of Jerusalem (past) Université de Lyon (future)
Jagiellonian University (secondary)
8th Polish Combinatorial Conference

Thue-Morse(-Prouhet) sequence $t: \mathbb{N} \rightarrow\{+1,-1\}$

$$
+--+-++--++-+--+-++-+--++--+-++-\ldots
$$

Thue-Morse(-Prouhet) sequence $t: \mathbb{N} \rightarrow\{+1,-1\}$

$$
+--+-++--++-+--+-++-+--++--+-++-\ldots
$$

The Thue-Morse sequence (discovered by Prouhet) can be seen in many ways:

Thue-Morse(-Prouhet) sequence $t: \mathbb{N} \rightarrow\{+1,-1\}$

The Thue-Morse sequence (discovered by Prouhet) can be seen in many ways:
(1) Explicit formula:

$$
t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}
$$

Thue-Morse(-Prouhet) sequence $t: \mathbb{N} \rightarrow\{+1,-1\}$

The Thue-Morse sequence (discovered by Prouhet) can be seen in many ways:
(1) Explicit formula:

$$
t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even) } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}
$$

(2) Automatic sequence:

Thue-Morse(-Prouhet) sequence $t: \mathbb{N} \rightarrow\{+1,-1\}$

The Thue-Morse sequence (discovered by Prouhet) can be seen in many ways:
(1) Explicit formula:

$$
t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even) } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd) }\end{cases}
$$

(2) Automatic sequence:

(3) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.

Thue-Morse(-Prouhet) sequence $t: \mathbb{N} \rightarrow\{+1,-1\}$

The Thue-Morse sequence (discovered by Prouhet) can be seen in many ways:
(1) Explicit formula:

$$
t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even) } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}
$$

(2) Automatic sequence:

(3) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
(4) Fixed point of a substitution: $+\mapsto+-, \quad-\mapsto-+$.

Thue-Morse(-Prouhet) sequence $t: \mathbb{N} \rightarrow\{+1,-1\}$

The Thue-Morse sequence (discovered by Prouhet) can be seen in many ways:
(1) Explicit formula:

$$
t(n)= \begin{cases}+1 & \text { if } n \text { is evil (i.e., sum of binary digits is even), } \\ -1 & \text { if } n \text { is odious (i.e., sum of binary digits is odd). }\end{cases}
$$

(2) Automatic sequence:

(3) Recurrence: $t(0)=+1, \quad t(2 n)=t(n), \quad t(2 n+1)=-t(n)$.
(4) Fixed point of a substitution: $+\mapsto+-, \quad-\mapsto-+$.
(6) Formal power series: Let $t^{\prime}(n)=\frac{1-t(n)}{2} \in\{0,1\}$ and $T(z)=\sum_{n=0}^{\infty} t^{\prime}(n) z^{n}$. Then

$$
z+(1+z)^{2} T(z)+(1+z)^{3} T(z)^{2}=0 \bmod 2 .
$$

Uniformity of Thue-Morse

Question (Mauduit \& Sarközy (1998))

Is the Thue-Morse sequence pseudorandom (in some meaningful sense)?

Uniformity of Thue-Morse

Question (Mauduit \& Sarközy (1998))

Is the Thue-Morse sequence pseudorandom (in some meaningful sense)?

No! At least in some ways.
(1) Linear subword complexity: $\#\left\{w \in\{+1,-1\}^{\ell}: w\right.$ appears in $\left.t\right\}=O(\ell)$.
(2) \# $\{n<N: t(n)=t(n+1)\} \simeq N / 3 \neq N / 2 . \quad \longrightarrow t(n)=t(n+1)$ iff $2 \nmid \nu_{2}(n+1)$
(3) $\#\{n<N: t(n)=t(n+1)=t(n+2)\}=0 . \quad \longrightarrow$ in general: t is cube-free

Uniformity of Thue-Morse

Question (Mauduit \& Sarközy (1998))

Is the Thue-Morse sequence pseudorandom (in some meaningful sense)?

No! At least in some ways.
(1) Linear subword complexity: $\#\left\{w \in\{+1,-1\}^{\ell}: w\right.$ appears in $\left.t\right\}=O(\ell)$.
(2) $\#\{n<N: t(n)=t(n+1)\} \simeq N / 3 \neq N / 2 . \quad \longrightarrow t(n)=t(n+1)$ iff $2 \nmid \nu_{2}(n+1)$
(3) $\#\{n<N: t(n)=t(n+1)=t(n+2)\}=0 . \quad \longrightarrow$ in general: t is cube-free

But in other ways, Yes!
(1) $\underset{n<N}{\mathbb{E}} t(n)=O(1 / N)$ (not very hard).
$\longrightarrow \underset{n<N}{\mathbb{E}_{1}}$ is shorthand for $\frac{1}{N} \sum_{n=0}^{N-1}$

Uniformity of Thue-Morse

Question (Mauduit \& Sarközy (1998))

Is the Thue-Morse sequence pseudorandom (in some meaningful sense)?

No! At least in some ways.
(1) Linear subword complexity: $\#\left\{w \in\{+1,-1\}^{\ell}: w\right.$ appears in $\left.t\right\}=O(\ell)$.
(2) $\#\{n<N: t(n)=t(n+1)\} \simeq N / 3 \neq N / 2 . \quad \longrightarrow t(n)=t(n+1)$ iff $2 \nmid \nu_{2}(n+1)$
(3) $\#\{n<N: t(n)=t(n+1)=t(n+2)\}=0 . \quad \longrightarrow$ in general: t is cube-free

But in other ways, Yes!
(1) $\underset{n<N}{\mathbb{E}} t(n)=O(1 / N)$ (not very hard).
$\longrightarrow \underset{n<N}{\mathbb{E}}$ is shorthand for $\frac{1}{N} \sum_{n=0}^{N-1}$
(2) $\underset{n<N}{\mathbb{E}} t(a n+b)=O\left(N^{-c}\right)$ with $c>0$.
\longrightarrow Gelfond (1968)

Uniformity of Thue-Morse

Question (Mauduit \& Sarközy (1998))

Is the Thue-Morse sequence pseudorandom (in some meaningful sense)?

No! At least in some ways.
(1) Linear subword complexity: $\#\left\{w \in\{+1,-1\}^{\ell}: w\right.$ appears in $\left.t\right\}=O(\ell)$.
(2) $\#\{n<N: t(n)=t(n+1)\} \simeq N / 3 \neq N / 2 . \quad \longrightarrow t(n)=t(n+1)$ iff $2 \nmid \nu_{2}(n+1)$
(3) $\#\{n<N: t(n)=t(n+1)=t(n+2)\}=0 . \quad \longrightarrow$ in general: t is cube-free

But in other ways, Yes!
(1) $\underset{n<N}{\mathbb{E}} t(n)=O(1 / N)$ (not very hard).
(2) $\underset{n<N}{\mathbb{E}} t(a n+b)=O\left(N^{-c}\right)$ with $c>0$.
(3) $\sup _{\alpha \in \mathbb{R}}|\underset{n<N}{\mathbb{E}} t(n) e(n \alpha)|=O\left(N^{-c}\right)$ with $c>0$.
$\longrightarrow \underset{n<N}{\mathbb{E}}$ is shorthand for $\frac{1}{N} \sum_{n=0}^{N-1}$
\longrightarrow Gelfond (1968)
\longrightarrow shorthand: $e(\theta)=e^{2 \pi i \theta}$

Gelfond problems

(1) The Thue-Morse sequence does not correlate with the primes:

$$
\underset{n<N}{\mathbb{E}} t\left(p_{n}\right)=O\left(N^{-c}\right) \text { for some } c>0,
$$

where p_{n} is the n-th prime, Mauduit \& Rivat (2010).

Gelfond problems

(1) The Thue-Morse sequence does not correlate with the primes:

$$
\underset{n<N}{\mathbb{E}} t\left(p_{n}\right)=O\left(N^{-c}\right) \text { for some } c>0
$$

where p_{n} is the n-th prime, Mauduit \& Rivat (2010).
(2) The Thue-Morse sequence does not correlate with the squares

$$
\underset{n<N}{\mathbb{E}} t\left(n^{2}\right)=O\left(N^{-c}\right) \text { for some } c>0
$$

Mauduit \& Rivat (2009). Moreover, $t\left(n^{2}\right)$ is normal (i.e., each subword appears with the "right" frequency) Drmota, Mauduit \& Rivat (2013).
Open problem: What about $t\left(n^{3}\right)$?

Gelfond problems

(1) The Thue-Morse sequence does not correlate with the primes:

$$
\underset{n<N}{\mathbb{E}} t\left(p_{n}\right)=O\left(N^{-c}\right) \text { for some } c>0
$$

where p_{n} is the n-th prime, Mauduit \& Rivat (2010).
(2) The Thue-Morse sequence does not correlate with the squares

$$
\underset{n<N}{\mathbb{E}} t\left(n^{2}\right)=O\left(N^{-c}\right) \text { for some } c>0
$$

Mauduit \& Rivat (2009). Moreover, $t\left(n^{2}\right)$ is normal (i.e., each subword appears with the "right" frequency) Drmota, Mauduit \& Rivat (2013).
Open problem: What about $t\left(n^{3}\right)$?
(3) The Thue-Morse sequence does not correlate with Piatetski-Shapiro sequences:

$$
\underset{n<N}{\mathbb{E}} t\left(\left\lfloor n^{\alpha}\right\rfloor\right)=O\left(N^{-c}\right) \text { for some } c>0
$$

where $1<\alpha<2$, Spiegelhofer (2020+). Also, $t(n)$ has level of distribution 1 .

Additive combinatorics perspective

Consider the set $T=\{n \in \mathbb{N}: t(n)=+1\}$. We are interested in additive properties of T, specifically:

Additive combinatorics perspective

Consider the set $T=\{n \in \mathbb{N}: t(n)=+1\}$. We are interested in additive properties of T, specifically:

- Pick $\ell \geq 3$. How many ℓ term arithmetic progressions are there in $T \cap[0, N)$, asymptotically as $N \rightarrow \infty$?

Additive combinatorics perspective

Consider the set $T=\{n \in \mathbb{N}: t(n)=+1\}$. We are interested in additive properties of T, specifically:

- Pick $\ell \geq 3$. How many ℓ term arithmetic progressions are there in $T \cap[0, N)$, asymptotically as $N \rightarrow \infty$?
- Random model suggests that the count of ℓ term arithmetic progressions in $T \cap[0, N)$ should be $\simeq N^{2} /(\ell-1) 2^{\ell+1}$. Is this valid? With what error term?

Additive combinatorics perspective

Consider the set $T=\{n \in \mathbb{N}: t(n)=+1\}$. We are interested in additive properties of T, specifically:

- Pick $\ell \geq 3$. How many ℓ term arithmetic progressions are there in $T \cap[0, N)$, asymptotically as $N \rightarrow \infty$?
- Random model suggests that the count of ℓ term arithmetic progressions in $T \cap[0, N)$ should be $\simeq N^{2} /(\ell-1) 2^{\ell+1}$. Is this valid? With what error term?
- More generally, pick a sequence $\epsilon_{0}, \ldots, \epsilon_{\ell-1} \in\{+1,-1\}$. How many pairs m, n are there with $0 \leq n+i m<N$ and $t(n+i m)=\epsilon_{i}$ for all $0 \leq i<\ell$, asymptotically as $N \rightarrow \infty$?

Additive combinatorics perspective

Consider the set $T=\{n \in \mathbb{N}: t(n)=+1\}$. We are interested in additive properties of T, specifically:

- Pick $\ell \geq 3$. How many ℓ term arithmetic progressions are there in $T \cap[0, N)$, asymptotically as $N \rightarrow \infty$?
- Random model suggests that the count of ℓ term arithmetic progressions in $T \cap[0, N)$ should be $\simeq N^{2} /(\ell-1) 2^{\ell+1}$. Is this valid? With what error term?
- More generally, pick a sequence $\epsilon_{0}, \ldots, \epsilon_{\ell-1} \in\{+1,-1\}$. How many pairs m, n are there with $0 \leq n+i m<N$ and $t(n+i m)=\epsilon_{i}$ for all $0 \leq i<\ell$, asymptotically as $N \rightarrow \infty$?
- Even more generally, pick a sequence of affine maps $A_{0}, A_{1}, \ldots, A_{\ell-1}: \mathbb{Z}^{d} \rightarrow \mathbb{Z}$. How many d-tuples $n_{0}, n_{1}, \ldots, n_{d-1}$ are there with $0 \leq A_{i}\left(n_{0}, \ldots, n_{d-1}\right)<N$ and $t\left(A_{i}\left(n_{0}, \ldots, n_{d-1}\right)\right)=\epsilon_{i}$ for all $0 \leq i<\ell$, asymptotically as $N \rightarrow \infty$?

Fourier analysis: first glance
Problem: Let $A \subset[N], \# A=\alpha N$ and $\ell \in \mathbb{N}$. How many ℓ-term arithmetic progressions in A ? Is there at least one?
$\longrightarrow[N]:=\{0,1, \ldots, N-1\}$; we identify $[N] \simeq \mathbb{Z} / N \mathbb{Z}$ and assume N is prime.

Fourier analysis: first glance
Problem: Let $A \subset[N], \# A=\alpha N$ and $\ell \in \mathbb{N}$. How many ℓ-term arithmetic progressions in A ? Is there at least one?
$\longrightarrow[N]:=\{0,1, \ldots, N-1\} ;$ we identify $[N] \simeq \mathbb{Z} / N \mathbb{Z}$ and assume N is prime.
Fourier expansion:

$$
1_{A}(n)=\sum_{\xi<N} \hat{1}_{A}(\xi) e\left(\frac{\xi n}{N}\right), \text { where } \hat{1}_{A}(\xi)=\underset{n<N}{\mathbb{E}} 1_{A}(n) e\left(\frac{-\xi n}{N}\right)
$$

Note that $\hat{1}_{A}(0)=\alpha$.

Fourier analysis: first glance
Problem: Let $A \subset[N], \# A=\alpha N$ and $\ell \in \mathbb{N}$. How many ℓ-term arithmetic progressions in A ? Is there at least one?
$\longrightarrow[N]:=\{0,1, \ldots, N-1\} ;$ we identify $[N] \simeq \mathbb{Z} / N \mathbb{Z}$ and assume N is prime.
Fourier expansion:

$$
1_{A}(n)=\sum_{\xi<N} \hat{1}_{A}(\xi) e\left(\frac{\xi n}{N}\right), \text { where } \hat{1}_{A}(\xi)=\underset{n<N}{\mathbb{E}} 1_{A}(n) e\left(\frac{-\xi n}{N}\right)
$$

Note that $\hat{1}_{A}(0)=\alpha$.

$$
\text { Motto: } A \text { is uniform } \Longleftrightarrow \hat{1}_{A}(\xi) \text { are small for } \xi \neq 0
$$

Lemma

Suppose that $\left|\hat{1}_{A}(\xi)\right|<\varepsilon$ for all $\xi \neq 0$. Then

$$
\#\left\{(n, m) \in[N]^{2}: n, n+m, n+2 m \in A\right\}=\frac{\alpha^{3}}{4} N^{2}+O\left(\varepsilon N^{2}\right)
$$

Fourier analysis: first glance
Problem: Let $A \subset[N], \# A=\alpha N$ and $\ell \in \mathbb{N}$. How many ℓ-term arithmetic progressions in A ? Is there at least one?
$\longrightarrow[N]:=\{0,1, \ldots, N-1\} ;$ we identify $[N] \simeq \mathbb{Z} / N \mathbb{Z}$ and assume N is prime.
Fourier expansion:

$$
1_{A}(n)=\sum_{\xi<N} \hat{1}_{A}(\xi) e\left(\frac{\xi n}{N}\right), \text { where } \hat{1}_{A}(\xi)=\underset{n<N}{\mathbb{E}} 1_{A}(n) e\left(\frac{-\xi n}{N}\right)
$$

Note that $\hat{1}_{A}(0)=\alpha$.

$$
\text { Motto: } A \text { is uniform } \Longleftrightarrow \hat{1}_{A}(\xi) \text { are small for } \xi \neq 0
$$

Lemma

Suppose that $\left|\hat{1}_{A}(\xi)\right|<\varepsilon$ for all $\xi \neq 0$. Then

$$
\#\left\{(n, m) \in[N]^{2}: n, n+m, n+2 m \in A\right\}=\frac{\alpha^{3}}{4} N^{2}+O\left(\varepsilon N^{2}\right)
$$

Corollary: The number of 3 -term APs in $\{n \in[N]: t(n)=+1\}$ is $\simeq N^{2} / 32$.

Higher order Fourier analysis: Introduction

Fact (Fourier analysis is not enough)

There exist $A \subset[N], \# A=\alpha N$ such that $\hat{1}_{A}(\xi) \simeq 0$ for $\xi \neq 0$ but the number of 4 -term APs in A is not $\simeq \alpha^{4} N^{2} / 6$ (like for a random set).

Example: $A=\left\{n \in[N]: 0 \leq\left\{n^{2} \sqrt{2}\right\}<\alpha\right\} . \quad \longrightarrow\{x\}=x-\lfloor x\rfloor$

Higher order Fourier analysis: Introduction

Fact (Fourier analysis is not enough)

There exist $A \subset[N], \# A=\alpha N$ such that $\hat{1}_{A}(\xi) \simeq 0$ for $\xi \neq 0$ but the number of 4 -term APs in A is not $\simeq \alpha^{4} N^{2} / 6$ (like for a random set).

Example: $A=\left\{n \in[N]: 0 \leq\left\{n^{2} \sqrt{2}\right\}<\alpha\right\} . \quad \longrightarrow\{x\}=x-\lfloor x\rfloor$
Higher order Fourier analysis

Higher order Fourier analysis: Introduction

Fact (Fourier analysis is not enough)

There exist $A \subset[N], \# A=\alpha N$ such that $\hat{1}_{A}(\xi) \simeq 0$ for $\xi \neq 0$ but the number of 4 -term APs in A is not $\simeq \alpha^{4} N^{2} / 6$ (like for a random set).

Example: $A=\left\{n \in[N]: 0 \leq\left\{n^{2} \sqrt{2}\right\}<\alpha\right\} . \quad \longrightarrow\{x\}=x-\lfloor x\rfloor$

Higher order Fourier analysis

Definition (Gowers norm)

Fix $s \geq 1$. Let $f:[N] \rightarrow \mathbb{R}$. Then $\|f\|_{U^{s}[N]} \geq 0$ is defined by:

$$
\|f\|_{U^{s}[N]}^{2^{s}}=\mathbb{E}_{\mathbf{n}}^{\mathbb{E}} \prod_{\omega \in\{0,1\}^{s}} f\left(n_{0}+\omega_{1} n_{1}+\ldots \omega_{s} n_{s}\right)
$$

where the average is taken over all parallelepipeds in [N], i.e., over all $\mathbf{n}=\left(n_{0}, \ldots, n_{s}\right) \in \mathbb{Z}^{s+1}$ such that $n_{0}+\omega_{1} n_{1}+\ldots \omega_{s} n_{s} \in[N]$ for all $\omega \in\{0,1\}^{s}$.
\longrightarrow for \mathbb{C}-valued functions: conjugate the terms with $\omega_{1}+\omega_{2}+\cdots+\omega_{s}$ odd

Higher order Fourier analysis: Introduction

Fact (Fourier analysis is not enough)

There exist $A \subset[N], \# A=\alpha N$ such that $\hat{1}_{A}(\xi) \simeq 0$ for $\xi \neq 0$ but the number of 4 -term APs in A is not $\simeq \alpha^{4} N^{2} / 6$ (like for a random set).

Example: $A=\left\{n \in[N]: 0 \leq\left\{n^{2} \sqrt{2}\right\}<\alpha\right\} . \quad \longrightarrow\{x\}=x-\lfloor x\rfloor$

Higher order Fourier analysis

Definition (Gowers norm)

Fix $s \geq 1$. Let $f:[N] \rightarrow \mathbb{R}$. Then $\|f\|_{U^{s}[N]} \geq 0$ is defined by:

$$
\|f\|_{U^{s}[N]}^{2^{s}}=\mathbb{E}_{\mathbf{n}}^{\mathbb{E}} \prod_{\omega \in\{0,1\}^{s}} f\left(n_{0}+\omega_{1} n_{1}+\ldots \omega_{s} n_{s}\right)
$$

where the average is taken over all parallelepipeds in [N], i.e., over all $\mathbf{n}=\left(n_{0}, \ldots, n_{s}\right) \in \mathbb{Z}^{s+1}$ such that $n_{0}+\omega_{1} n_{1}+\ldots \omega_{s} n_{s} \in[N]$ for all $\omega \in\{0,1\}^{s}$.
\longrightarrow for \mathbb{C}-valued functions: conjugate the terms with $\omega_{1}+\omega_{2}+\cdots+\omega_{s}$ odd
Motto: A is uniform of order $s \Longleftrightarrow\left\|1_{A}-\alpha 1_{[N]}\right\|_{U^{s}[N]}$ is small.

Higher order Fourier analysis: Basic properties

Facts:

(1) $\|f\|_{U^{s}[N]}$ is well-defined for $s \geq 1$, i.e., the average on the RHS is ≥ 0
(2) $\|f\|_{U^{1}[N]}=\left|\mathbb{E}_{n} f(n)\right|$ and $\|f\|_{U^{2}[N]} \doteq\|\hat{f}\|_{\ell^{4}} \quad \longrightarrow$ true in $\mathbb{Z} / N \mathbb{Z}$ rather than $[N]$
(3) $\|f\|_{U^{1}[N]} \ll\|f\|_{U^{2}[N]} \ll\|f\|_{U^{3}[N]} \ll \ldots$
(4) $\|f+g\|_{U^{s}[N]} \leq\|f\|_{U^{s}[N]}+\|g\|_{U^{s}[N]}$ and $\|\lambda f\|_{U^{s}[N]}=|\lambda|\|f\|_{U^{s}[N]}$

Higher order Fourier analysis: Basic properties

Facts:

(1) $\|f\|_{U^{s}[N]}$ is well-defined for $s \geq 1$, i.e., the average on the RHS is ≥ 0
(2) $\|f\|_{U^{1}[N]}=\left|\mathbb{E}_{n} f(n)\right|$ and $\|f\|_{U^{2}[N]} \doteq\|\hat{f}\|_{\ell^{4}} \quad \longrightarrow$ true in $\mathbb{Z} / N \mathbb{Z}$ rather than $[N]$
(3) $\|f\|_{U^{1}[N]} \ll\|f\|_{U^{2}[N]} \ll\|f\|_{U^{3}[N]} \ll \ldots$
(4) $\|f+g\|_{U^{s}[N]} \leq\|f\|_{U^{s}[N]}+\|g\|_{U^{s}[N]}$ and $\|\lambda f\|_{U^{s}[N]}=|\lambda|\|f\|_{U^{s}[N]}$

Example

If $p \in \mathbb{R}[x], f(n)=e(p(n)), \operatorname{deg} p=s$ then $\|f\|_{U^{s}[N]} \simeq 0$ but $\|f\|_{U^{s+1}[N]}=1$.
\longrightarrow assume here that the leading coefficient of p is reasonable

Higher order Fourier analysis: Basic properties

Facts:

(1) $\|f\|_{U^{s}[N]}$ is well-defined for $s \geq 1$, i.e., the average on the RHS is ≥ 0
(2) $\|f\|_{U^{1}[N]}=\left|\mathbb{E}_{n} f(n)\right|$ and $\|f\|_{U^{2}[N]} \doteq\|\hat{f}\|_{\ell^{4}} \quad \longrightarrow$ true in $\mathbb{Z} / N \mathbb{Z}$ rather than $[N]$
(3) $\|f\|_{U^{1}[N]} \ll\|f\|_{U^{2}[N]} \ll\|f\|_{U^{3}[N]} \ll \ldots$
(4) $\|f+g\|_{U^{s}[N]} \leq\|f\|_{U^{s}[N]}+\|g\|_{U^{s}[N]}$ and $\|\lambda f\|_{U^{s}[N]}=|\lambda|\|f\|_{U^{s}[N]}$

Example

If $p \in \mathbb{R}[x], f(n)=e(p(n)), \operatorname{deg} p=s$ then $\|f\|_{U^{s}[N]} \simeq 0$ but $\|f\|_{U^{s+1}[N]}=1$.
\longrightarrow assume here that the leading coefficient of p is reasonable

Theorem (Generalised von Neumann Theorem)

Fix $s \geq 1$. If $A \subset[N], \# A=\alpha N$ and $\left\|1_{A}-\alpha 1_{[N]}\right\|_{U^{s}[N]} \leq \varepsilon$, then A contains as many $(s+1)$-term APs as a random set of the same size, up to an error of size ε :

$$
\#\left\{(n, m) \in[N]^{2} \quad: n, n+m, \ldots, n+s m \in A\right\}=\alpha^{s} N^{2} / 2 s+O\left(\varepsilon N^{2}\right)
$$

Gowers uniform sequences

Let μ denote the Möbius function

$$
\mu(n)= \begin{cases}(-1)^{k} & \text { if } n=p_{1} \ldots p_{k} \text { where } p_{1}, \ldots, p_{k} \text { are distinct primes } \\ 0 & \text { if } n \text { is divisible by a square }\end{cases}
$$

Recall that μ is multiplicative, meaning that $\mu(m n)=\mu(m) \mu(n)$ if $\operatorname{gcd}(m, n)=1$.

Gowers uniform sequences

Let μ denote the Möbius function

$$
\mu(n)= \begin{cases}(-1)^{k} & \text { if } n=p_{1} \ldots p_{k} \text { where } p_{1}, \ldots, p_{k} \text { are distinct primes } \\ 0 & \text { if } n \text { is divisible by a square }\end{cases}
$$

Recall that μ is multiplicative, meaning that $\mu(m n)=\mu(m) \mu(n)$ if $\operatorname{gcd}(m, n)=1$.

Theorem (Green \& Tao (2008+2012))

Fix $s \geq 2$. The Möbius function is Gowers uniform of order s :

$$
\|\mu\|_{U^{s}[N]} \rightarrow 0 \text { as } N \rightarrow \infty
$$

Hence, the primes contain many arithmetic progressions of length $s+1$. \longrightarrow Vast over-simplification, quantitative bounds needed, etc.

Gowers uniform sequences

Let μ denote the Möbius function

$$
\mu(n)= \begin{cases}(-1)^{k} & \text { if } n=p_{1} \ldots p_{k} \text { where } p_{1}, \ldots, p_{k} \text { are distinct primes } \\ 0 & \text { if } n \text { is divisible by a square }\end{cases}
$$

Recall that μ is multiplicative, meaning that $\mu(m n)=\mu(m) \mu(n)$ if $\operatorname{gcd}(m, n)=1$.

Theorem (Green \& Tao (2008+2012))

Fix $s \geq 2$. The Möbius function is Gowers uniform of order s:

$$
\|\mu\|_{U^{s}[N]} \rightarrow 0 \text { as } N \rightarrow \infty
$$

Hence, the primes contain many arithmetic progressions of length $s+1$. \longrightarrow Vast over-simplification, quantitative bounds needed, etc.

Theorem (Frantzikinakis \& Host (2017))

Let ν be a (bounded) multiplicative function and $s \geq 2$. Then

$$
\|\nu\|_{U^{s}[N]} \rightarrow 0 \text { as } N \rightarrow \infty \text { if and only if }\|\nu\|_{U^{2}[N]} \rightarrow 0 \text { as } N \rightarrow \infty .
$$

Higher order Fourier analysis \& Thue-Morse
Recall: $t(n)=\left\{\begin{array}{l}+1 \text { if the sum of binary digits of } n \text { is even, } \\ -1 \text { if the sum of binary digits of } n \text { is odd. }\end{array}\right.$

Higher order Fourier analysis \& Thue-Morse
Recall: $t(n)=\left\{\begin{array}{l}+1 \text { if the sum of binary digits of } n \text { is even, } \\ -1 \text { if the sum of binary digits of } n \text { is odd. }\end{array}\right.$

Theorem (K. (2019))

Fix $s \geq 1$. There exists $c=c_{s}>0$ such that $\|t\|_{U^{s}[N]} \ll N^{-c}$.

Higher order Fourier analysis \& Thue-Morse
Recall: $t(n)=\left\{\begin{array}{l}+1 \text { if the sum of binary digits of } n \text { is even, } \\ -1 \text { if the sum of binary digits of } n \text { is odd. }\end{array}\right.$

Theorem (K. (2019))

Fix $s \geq 1$. There exists $c=c_{s}>0$ such that $\|t\|_{U^{s}[N]} \ll N^{-c}$.

Corollary

Fix $s \geq 1$ and let $c=c_{s}$ be as above. Then for any $\epsilon_{i} \in\{+1,-1\},(0 \leq i \leq s)$

$$
\#\left\{(n, m): n+i m<N \text { and } t(n+i m)=\epsilon_{i} \text { for } 0 \leq i \leq s\right\}=\frac{N^{2}}{2^{s+2} s}+O\left(N^{2-c}\right) .
$$

In particular, the number of $(s+1)$-term arithmetic progressions contained in the set $\{n<N: t(n)=+1\}$ is $N^{2} / 2^{s+2} s+O\left(N^{2-c}\right)$.

Higher order Fourier analysis \& Thue-Morse
Recall: $t(n)=\left\{\begin{array}{l}+1 \text { if the sum of binary digits of } n \text { is even, } \\ -1 \text { if the sum of binary digits of } n \text { is odd. }\end{array}\right.$

Theorem (K. (2019))

Fix $s \geq 1$. There exists $c=c_{s}>0$ such that $\|t\|_{U^{s}[N]} \ll N^{-c}$.

Corollary

Fix $s \geq 1$ and let $c=c_{s}$ be as above. Then for any $\epsilon_{i} \in\{+1,-1\},(0 \leq i \leq s)$

$$
\#\left\{(n, m): n+i m<N \text { and } t(n+i m)=\epsilon_{i} \text { for } 0 \leq i \leq s\right\}=\frac{N^{2}}{2^{s+2} s}+O\left(N^{2-c}\right) .
$$

In particular, the number of $(s+1)$-term arithmetic progressions contained in the set $\{n<N: t(n)=+1\}$ is $N^{2} / 2^{s+2} s+O\left(N^{2-c}\right)$.

- Same holds for the Rudin-Shapiro sequence (count appearances of the pattern 11 instead of 1) as well as other pattern-counting sequences.

Higher order Fourier analysis \& k-multiplicative sequences

Definition
Fix $k \geq 2$. A sequence $f: \mathbb{N} \rightarrow \mathbb{C}$ is k-multiplicative if

$$
f(n+m)=f(n) f(m) \quad \text { for all } n, m \text { s.t. } m<k^{i}, k^{i} \mid n \text { for some } i .
$$

Higher order Fourier analysis \& k-multiplicative sequences

Definition

Fix $k \geq 2$. A sequence $f: \mathbb{N} \rightarrow \mathbb{C}$ is k-multiplicative if

$$
f(n+m)=f(n) f(m) \quad \text { for all } n, m \text { s.t. } m<k^{i}, k^{i} \mid n \text { for some } i .
$$

Example

The Thue-Morse sequence $t(n)$ is 2-multiplicative. More generally, let

$$
s_{k}(n)=\text { sum of digits of } n \text { in base } k .
$$

Then $e\left(\alpha s_{k}(n)\right)$ is k-multiplicative for any $\alpha \in \mathbb{R}$.

$$
\longrightarrow e(\theta)=e^{2 \pi i \theta}
$$

Higher order Fourier analysis \& k-multiplicative sequences

Definition

Fix $k \geq 2$. A sequence $f: \mathbb{N} \rightarrow \mathbb{C}$ is k-multiplicative if

$$
f(n+m)=f(n) f(m) \quad \text { for all } n, m \text { s.t. } m<k^{i}, k^{i} \mid n \text { for some } i
$$

Example

The Thue-Morse sequence $t(n)$ is 2 -multiplicative. More generally, let

$$
s_{k}(n)=\text { sum of digits of } n \text { in base } k .
$$

Then $e\left(\alpha s_{k}(n)\right)$ is k-multiplicative for any $\alpha \in \mathbb{R}$.

$$
\longrightarrow e(\theta)=e^{2 \pi i \theta}
$$

Theorem (Fan \& K. (2019))
Let f be a bounded k-multiplicative function and $s \geq 2$. Then

$$
\|f\|_{U^{s}[N]} \rightarrow 0 \text { as } N \rightarrow \infty \text { if and only if }\|f\|_{U^{2}[N]} \rightarrow 0 \text { as } N \rightarrow \infty
$$

Finite automata

Finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10, k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n.

Finite automata

Some notation: We let k denote the base in which we work. $\quad \longrightarrow$ e.g. $k=10, k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n.
\longrightarrow no leading zeros

A finite k-automaton consists of:

- a finite set of states S with a
 distinguished initial state s_{0};

Finite automata

Some notation: We let k denote the base in which we work. \longrightarrow e.g. $k=10, k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n.
\longrightarrow no leading zeros

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;

Finite automata

Some notation: We let k denote the base in which we work. \longrightarrow e.g. $k=10, k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n.
\longrightarrow no leading zeros

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \mathbb{C}$.

Finite automata

Some notation: We let k denote the base in which we work. \longrightarrow e.g. $k=10, k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n.
\longrightarrow no leading zeros

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \mathbb{C}$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Finite automata

Some notation: We let k denote the base in which we work. \longrightarrow e.g. $k=10, k=2$

- $\Sigma_{k}=\{0,1, \ldots, k-1\}$, the set of digits in base k;
- Σ_{k}^{*} is the set of words over Σ_{k}, monoid with concatenation;
- for $n \in \mathbb{N},(n)_{k} \in \Sigma_{k}^{*}$ is the base- k expansion of n.

A finite k-automaton consists of:

- a finite set of states S with a distinguished initial state s_{0};
- a transition function $\delta: S \times \Sigma_{k} \rightarrow S$;
- an output function $\tau: S \rightarrow \mathbb{C}$.

Computing the sequence:

- Extend δ to a map $S \times \Sigma_{k}^{*}$ with $\delta(s, u v)=\delta(\delta(s, u), v)$;
- The sequence computed by the automaton is given by $a(n)=\tau\left(\delta\left(s_{0},(n)_{k}\right)\right)$.
- The automaton above computes the Rudin-Shapiro sequence $(-1)^{\#}$ of 11 in $(n)_{2}$.

Motto: Automatic \Longleftrightarrow Computable by a finite device.

Automatic sequences

Let $a: \mathbb{N} \rightarrow \Omega$ be a sequence. Then a is k-automatic if and only if it satisfies any/all of the following equivalent conditions:

Automatic sequences

Let $a: \mathbb{N} \rightarrow \Omega$ be a sequence. Then a is k-automatic if and only if it satisfies any/all of the following equivalent conditions:
(1) There exists a finite k-automaton that computes a.

Automatic sequences

Let $a: \mathbb{N} \rightarrow \Omega$ be a sequence. Then a is k-automatic if and only if it satisfies any/all of the following equivalent conditions:
(1) There exists a finite k-automaton that computes a.
(2) The k-kernel $\mathcal{N}_{k}(a)$ of a is finite, where

$$
\mathcal{N}_{k}(a)=\left\{a\left(k^{t} n+r\right): t \in \mathbb{N}, 0 \leq r<k^{t}\right\} .
$$

Automatic sequences

Let $a: \mathbb{N} \rightarrow \Omega$ be a sequence. Then a is k-automatic if and only if it satisfies any/all of the following equivalent conditions:
(1) There exists a finite k-automaton that computes a.
(2) The k-kernel $\mathcal{N}_{k}(a)$ of a is finite, where

$$
\mathcal{N}_{k}(a)=\left\{a\left(k^{t} n+r\right): t \in \mathbb{N}, 0 \leq r<k^{t}\right\} .
$$

(3) The sequence a is the letter-to-letter coding of a fixed point of a k-uniform morphism on the monoid of words over some finite alphabet.

Automatic sequences

Let $a: \mathbb{N} \rightarrow \Omega$ be a sequence. Then a is k-automatic if and only if it satisfies any/all of the following equivalent conditions:
(1) There exists a finite k-automaton that computes a.
(2) The k-kernel $\mathcal{N}_{k}(a)$ of a is finite, where

$$
\mathcal{N}_{k}(a)=\left\{a\left(k^{t} n+r\right): t \in \mathbb{N}, 0 \leq r<k^{t}\right\}
$$

(3) The sequence a is the letter-to-letter coding of a fixed point of a k-uniform morphism on the monoid of words over some finite alphabet.
(4) (Applicable if k is a prime and $\Omega \subset \mathbb{F}$ where \mathbb{F} is a field of characteristic k.) The formal power series $F(z)=\sum_{n=0}^{\infty} a(n) z^{n} \in \mathbb{F}[[z]]$ is algebraic over $\mathbb{F}(z)$.

Automatic sequences

Let $a: \mathbb{N} \rightarrow \Omega$ be a sequence. Then a is k-automatic if and only if it satisfies any/all of the following equivalent conditions:
(1) There exists a finite k-automaton that computes a.
(2) The k-kernel $\mathcal{N}_{k}(a)$ of a is finite, where

$$
\mathcal{N}_{k}(a)=\left\{a\left(k^{t} n+r\right): t \in \mathbb{N}, 0 \leq r<k^{t}\right\} .
$$

(3) The sequence a is the letter-to-letter coding of a fixed point of a k-uniform morphism on the monoid of words over some finite alphabet.
(4) (Applicable if k is a prime and $\Omega \subset \mathbb{F}$ where \mathbb{F} is a field of characteristic k.) The formal power series $F(z)=\sum_{n=0}^{\infty} a(n) z^{n} \in \mathbb{F}[[z]]$ is algebraic over $\mathbb{F}(z)$.

Remark

The many alternative definitions create connections to combinatorics (graph theory, combinatorics on words), computer science, dynamics (symbolic systems), algebra, logic (Büchi arithmetic), etc.

Uniformity of automatic sequences

Question

- Which among k-automatic sequences are Gowers uniform?
- If a k-automatic sequence is uniform of order 2 , must it be uniform of all orders?

Uniformity of automatic sequences

Question

- Which among k-automatic sequences are Gowers uniform?
- If a k-automatic sequence is uniform of order 2 , must it be uniform of all orders?

Example

The following sequences are 2-automatic and not Gowers uniform:
(1) periodic sequences like 1 or $(-1)^{n}$;
(2) almost periodic sequences like $\nu_{2}(n) \bmod 2$;
$\longrightarrow 2^{\nu_{2}(n)} \| n$
(3) slowly varying sequences like $\left\lfloor\log _{2}(n)\right\rfloor \bmod 2$.
\longrightarrow length of expansion

Uniformity of automatic sequences

Question

- Which among k-automatic sequences are Gowers uniform?
- If a k-automatic sequence is uniform of order 2 , must it be uniform of all orders?

Example

The following sequences are 2-automatic and not Gowers uniform:
(1) periodic sequences like 1 or $(-1)^{n}$;
(2) almost periodic sequences like $\nu_{2}(n) \bmod 2$;
(3) slowly varying sequences like $\left\lfloor\log _{2}(n)\right\rfloor \bmod 2$.
$\longrightarrow 2^{\nu_{2}(n)} \| n$
\longrightarrow length of expansion

Theorem (Byszewski, K. \& Müllner (2020+))

Any automatic sequence has a decomposition $a=a_{\text {str }}+a_{\mathrm{uni}}$, where a_{uni} is highly Gowers uniform and a_{str} is a combination of sequences of the above types.

Arithmetic regularity lemma for automatic sequences

Definition: A k-automatic sequence $a(n)$ is forwards synchronising if there exists a string of base- k digits $w \in \Sigma_{k}^{*}$ such that

$$
a\left([x w y]_{k}\right)=a\left(\left[x^{\prime} w y\right]_{k}\right)
$$

for all strings of base- k digits $x, x^{\prime}, y \in \Sigma_{k}^{*}$. Accordingly, $a(n)$ is backwards synchronising if there exists $w \in \Sigma_{k}^{*}$ such that

$$
a\left([x w y]_{k}\right)=a\left(\left[x w y^{\prime}\right]_{k}\right)
$$

for all strings of base- k digits $x, y, y^{\prime} \in \Sigma_{k}^{*}$.
$\longrightarrow[z]_{k}=$ integer whose expansion is z

Arithmetic regularity lemma for automatic sequences

Definition: A k-automatic sequence $a(n)$ is forwards synchronising if there exists a string of base- k digits $w \in \Sigma_{k}^{*}$ such that

$$
a\left([x w y]_{k}\right)=a\left(\left[x^{\prime} w y\right]_{k}\right)
$$

for all strings of base- k digits $x, x^{\prime}, y \in \Sigma_{k}^{*}$. Accordingly, $a(n)$ is backwards synchronising if there exists $w \in \Sigma_{k}^{*}$ such that

$$
a\left([x w y]_{k}\right)=a\left(\left[x w y^{\prime}\right]_{k}\right)
$$

for all strings of base- k digits $x, y, y^{\prime} \in \Sigma_{k}^{*}$.
$\longrightarrow[z]_{k}=$ integer whose expansion is z

Theorem (Byszewski, K. \& Müllner (2020+))

Let a be an automatic sequence. Then there is a decomposition $a=a_{\mathrm{str}}+a_{\mathrm{uni}}$ where
(1) for each $s \geq 2$ there exists $c_{s}>0$ such that $\left\|a_{\text {uni }}\right\|_{U^{s}[N]} \ll N^{-c_{s}}$;
(2) there exist automatic sequences $b_{\mathrm{per}}, b_{\mathrm{fs}}, b_{\mathrm{bs}}$ that are periodic, forwards synchronising and backwards synchronising respectively and a function F such that $a_{\mathrm{str}}(n)=F\left(b_{\mathrm{per}}(n), b_{\mathrm{fs}}(n), b_{\mathrm{bs}}(n)\right)$.

Arithmetic regularity lemma for automatic sequences

Definition: A k-automatic sequence $a(n)$ is forwards synchronising if there exists a string of base- k digits $w \in \Sigma_{k}^{*}$ such that

$$
a\left([x w y]_{k}\right)=a\left(\left[x^{\prime} w y\right]_{k}\right)
$$

for all strings of base- k digits $x, x^{\prime}, y \in \Sigma_{k}^{*}$. Accordingly, $a(n)$ is backwards synchronising if there exists $w \in \Sigma_{k}^{*}$ such that

$$
a\left([x w y]_{k}\right)=a\left(\left[x w y^{\prime}\right]_{k}\right)
$$

for all strings of base- k digits $x, y, y^{\prime} \in \Sigma_{k}^{*}$.
$\longrightarrow[z]_{k}=$ integer whose expansion is z

Theorem (Byszewski, K. \& Müllner (2020+))

Let a be an automatic sequence. Then there is a decomposition $a=a_{\mathrm{str}}+a_{\mathrm{uni}}$ where
(1) for each $s \geq 2$ there exists $c_{s}>0$ such that $\left\|a_{\text {uni }}\right\|_{U^{s}[N]} \ll N^{-c_{s}}$;
(2) there exist automatic sequences $b_{\mathrm{per}}, b_{\mathrm{fs}}, b_{\mathrm{bs}}$ that are periodic, forwards synchronising and backwards synchronising respectively and a function F such that $a_{\mathrm{str}}(n)=F\left(b_{\mathrm{per}}(n), b_{\mathrm{fs}}(n), b_{\mathrm{bs}}(n)\right)$.

- This is a distant relative of the celebrated Arithmetic Regularity Lemma, which gives a similar decomposition for an arbitrary sequence, albeit with less well-behaved components, Green \& Tao, (2010).

Applications and consequences

Applications and consequences

Corollary

Let a be a k-automatic sequence with $\|a\|_{U^{2}[N]} \rightarrow 0$ as $N \rightarrow \infty$. Then for each $s \geq 2$ there exists $c_{s}>0$ such that $\|a\|_{U^{s}[N]} \ll N^{-c_{s}}$.

Applications and consequences

Corollary

Let a be a k-automatic sequence with $\|a\|_{U^{2}[N]} \rightarrow 0$ as $N \rightarrow \infty$. Then for each $s \geq 2$ there exists $c_{s}>0$ such that $\|a\|_{U^{s}[N]} \ll N^{-c_{s}}$.

We call a set $A \subset \mathbb{N}$ automatic if 1_{A} is automatic.

Corollary

Let $\ell \geq 2$ and let $A \subset \mathbb{N}$ an automatic set with $\lim _{N \rightarrow \infty} \frac{1}{N} \# A \cap[0, N)=\alpha>0$. Then there exists $\delta>0$ such that for each $N>0$ there are $\geq \delta N$ values of $m \leq N$ such that $A \cap[0, N)$ contains $\frac{99}{100} \alpha^{\ell} N$ arithmetic progressions with step m.

Applications and consequences

Corollary

Let a be a k-automatic sequence with $\|a\|_{U^{2}[N]} \rightarrow 0$ as $N \rightarrow \infty$. Then for each $s \geq 2$ there exists $c_{s}>0$ such that $\|a\|_{U^{s}[N]} \ll N^{-c_{s}}$.

We call a set $A \subset \mathbb{N}$ automatic if 1_{A} is automatic.

Corollary

Let $\ell \geq 2$ and let $A \subset \mathbb{N}$ an automatic set with $\lim _{N \rightarrow \infty} \frac{1}{N} \# A \cap[0, N)=\alpha>0$. Then there exists $\delta>0$ such that for each $N>0$ there are $\geq \delta N$ values of $m \leq N$ such that $A \cap[0, N)$ contains $\frac{99}{100} \alpha^{\ell} N$ arithmetic progressions with step m.

For general sets $A \subset \mathbb{N}$, the corresponding statement is

- true for $\ell=2,3,4$;
- false for all $\ell \geq 5$.

Digression: automatic generalised polynomials
Question: How to detect lack of Gowers uniformity?

Digression: automatic generalised polynomials
Question: How to detect lack of Gowers uniformity?
Inverse Theorem for Gowers uniformity norms (Green, Tao \& Ziegler (2012))
Let $a(n)$ be a bounded sequence. Then the following are (essentially) equivalent:
(1) a is not Gowers uniform of all orders;
(2) a is correlated with a nilsequence;
\longrightarrow we will not define nilsequences
(3) a is correlated with a bounded generalised polynomial.

Digression: automatic generalised polynomials
Question: How to detect lack of Gowers uniformity?

Inverse Theorem for Gowers uniformity norms (Green, Tao \& Ziegler (2012))

Let $a(n)$ be a bounded sequence. Then the following are (essentially) equivalent:
(1) a is not Gowers uniform of all orders;
(2) a is correlated with a nilsequence;
\longrightarrow we will not define nilsequences
(3) a is correlated with a bounded generalised polynomial.

Definition: A generalised polynomial is a function built up from (standard) polynomials, the fractional part function, addition and multiplication.

Digression: automatic generalised polynomials
Question: How to detect lack of Gowers uniformity?

Inverse Theorem for Gowers uniformity norms (Green, Tao \& Ziegler (2012))

Let $a(n)$ be a bounded sequence. Then the following are (essentially) equivalent:
(1) a is not Gowers uniform of all orders;
(2) a is correlated with a nilsequence;
\longrightarrow we will not define nilsequences
(3) a is correlated with a bounded generalised polynomial.

Definition: A generalised polynomial is a function built up from (standard) polynomials, the fractional part function, addition and multiplication. Example: $f(n)=\left\{\sqrt{3}\left\{\sqrt{2} n^{2}+1 / 7\right\}^{2}+n\left\{\sqrt{5} n^{3}+\pi\right\}\right\}$.

Digression: automatic generalised polynomials
Question: How to detect lack of Gowers uniformity?

Inverse Theorem for Gowers uniformity norms (Green, Tao \& Ziegler (2012))

Let $a(n)$ be a bounded sequence. Then the following are (essentially) equivalent:
(1) a is not Gowers uniform of all orders;
(2) a is correlated with a nilsequence;
\longrightarrow we will not define nilsequences
(3) a is correlated with a bounded generalised polynomial.

Definition: A generalised polynomial is a function built up from (standard) polynomials, the fractional part function, addition and multiplication.
Example: $f(n)=\left\{\sqrt{3}\left\{\sqrt{2} n^{2}+1 / 7\right\}^{2}+n\left\{\sqrt{5} n^{3}+\pi\right\}\right\}$.
Question: Are there any non-trivial sequences that are both automatic and given by generalised polynomial formulae?

Digression: automatic generalised polynomials

Question: How to detect lack of Gowers uniformity?

Inverse Theorem for Gowers uniformity norms (Green, Tao \& Ziegler (2012))

Let $a(n)$ be a bounded sequence. Then the following are (essentially) equivalent:
(1) a is not Gowers uniform of all orders;
(2) a is correlated with a nilsequence;
\longrightarrow we will not define nilsequences
(3) a is correlated with a bounded generalised polynomial.

Definition: A generalised polynomial is a function built up from (standard) polynomials, the fractional part function, addition and multiplication.
Example: $f(n)=\left\{\sqrt{3}\left\{\sqrt{2} n^{2}+1 / 7\right\}^{2}+n\left\{\sqrt{5} n^{3}+\pi\right\}\right\}$.

Question: Are there any non-trivial sequences that are both automatic and given by generalised polynomial formulae?

- "Extreme case" when investigating uniformity of automatic sequences.
- Alternatively, one can ask how simple a generalised polynomial sequence can be from the point of view of computability, without being trivial.

Digression: automatic generalised polynomials
Question: Are there non-trivial generalised polynomials that are automatic?

Digression: automatic generalised polynomials
Question: Are there non-trivial generalised polynomials that are automatic?

- If $\lfloor\alpha n+\beta\rfloor \bmod m$ is automatic then it is periodic, Allouche \& Shallit (2003).

Digression: automatic generalised polynomials
Question: Are there non-trivial generalised polynomials that are automatic?

- If $\lfloor\alpha n+\beta\rfloor \bmod m$ is automatic then it is periodic, Allouche \& Shallit (2003).
- If $a(n)$ is both automatic and a generalised polynomial, then $a=[$ periodic $]+$ [almost everywhere zero], Byszewski \& K. (2020).

Digression: automatic generalised polynomials

Question: Are there non-trivial generalised polynomials that are automatic?

- If $\lfloor\alpha n+\beta\rfloor \bmod m$ is automatic then it is periodic, Allouche \& Shallit (2003).
- If $a(n)$ is both automatic and a generalised polynomial, then $a=[$ periodic $]+[$ almost everywhere zero], Byszewski \& K. (2020).
- If $A \subset \mathbb{N}$ is 2 -automatic then either (i) A has much additive structure (contains a "shifted IP set"), or (ii) looks like $\left\{2^{i}: i \geq 0\right\}$ (" 2 -arid").

Digression: automatic generalised polynomials

Question: Are there non-trivial generalised polynomials that are automatic?

- If $\lfloor\alpha n+\beta\rfloor \bmod m$ is automatic then it is periodic, Allouche \& Shallit (2003).
- If $a(n)$ is both automatic and a generalised polynomial, then $a=[$ periodic $]+$ [almost everywhere zero], Byszewski \& K. (2020).
- If $A \subset \mathbb{N}$ is 2 -automatic then either (i) A has much additive structure (contains a "shifted IP set"), or (ii) looks like $\left\{2^{i}: i \geq 0\right\}$ (" 2 -arid").
- If $A \subset \mathbb{N}$ is generalised polynomial and $d(A)=0$, then A has very little additive structure (no IP sets or their shifts), Byszewski \& K. (2018).

Digression: automatic generalised polynomials

Question: Are there non-trivial generalised polynomials that are automatic?

- If $\lfloor\alpha n+\beta\rfloor \bmod m$ is automatic then it is periodic, Allouche \& Shallit (2003).
- If $a(n)$ is both automatic and a generalised polynomial, then $a=[$ periodic $]+[$ almost everywhere zero], Byszewski \& K. (2020).
- If $A \subset \mathbb{N}$ is 2 -automatic then either (i) A has much additive structure (contains a "shifted IP set"), or (ii) looks like $\left\{2^{i}: i \geq 0\right\}$ (" 2 -arid").
- If $A \subset \mathbb{N}$ is generalised polynomial and $d(A)=0$, then A has very little additive structure (no IP sets or their shifts), Byszewski \& K. (2018).
- If $A \subset \mathbb{N}$ is generalised polynomial and $2^{i} \in A$ for many values of i (central set), then there also are many (syndetic set) values of n such that $2^{i} n \in A$ for many and values of i. K. (2020+).

Digression: automatic generalised polynomials

Question: Are there non-trivial generalised polynomials that are automatic?

- If $\lfloor\alpha n+\beta\rfloor \bmod m$ is automatic then it is periodic, Allouche \& Shallit (2003).
- If $a(n)$ is both automatic and a generalised polynomial, then $a=[$ periodic $]+[$ almost everywhere zero], Byszewski \& K. (2020).
- If $A \subset \mathbb{N}$ is 2 -automatic then either (i) A has much additive structure (contains a "shifted IP set"), or (ii) looks like $\left\{2^{i}: i \geq 0\right\}$ (" 2 -arid").
- If $A \subset \mathbb{N}$ is generalised polynomial and $d(A)=0$, then A has very little additive structure (no IP sets or their shifts), Byszewski \& K. (2018).
- If $A \subset \mathbb{N}$ is generalised polynomial and $2^{i} \in A$ for many values of i (central set), then there also are many (syndetic set) values of n such that $2^{i} n \in A$ for many and values of i. K. (2020+).

Theorem (Byszewski \& K.)

Let $a(n)$ be a sequence and let $k \geq 2$. Then the following are equivalent:

- $a(n)$ is both a generalised polynomial and a k-automatic sequence;
- $a(n)$ is eventually periodic.

Thank you for your attention!

