Graph structure useful for approximation problems

Marcin Wrochna, University of Oxford

Based on work with Miguel Romero, Standa Živný. Figure based on Felix Reidl's.

Question

Approximation* is easy on planar graphs and hard on some bounded degree graphs.
Where is the boundary?
What makes planar graphs easy and other graph classes hard?

Question

Approximation* is easy on planar graphs and hard on some bounded degree graphs.
Where is the boundary?
What makes planar graphs easy and other graph classes hard?

* Getting a Polynomial-Time Approximation Scheme (PTAS) $=(1 \pm \varepsilon)$ approximation in polynomial time, $n^{f(\varepsilon)}$.
* For Max IS, Min VC, Max k-Cut. . .

Question

Approximation* is easy on planar graphs and hard on some bounded degree graphs.
Where is the boundary?
What makes planar graphs easy and other graph classes hard?

* Getting a Polynomial-Time Approximation Scheme (PTAS) $=(1 \pm \varepsilon)$ approximation in polynomial time, $n^{f(\varepsilon)}$.
* For Max IS, Min VC, Max k-Cut. . .

Can we characterize classes \mathcal{G} such that $\operatorname{MIS}(\mathcal{G})$ has a PTAS?
Trouble: $\mathcal{G}=\left\{\right.$ graphs $G \cup P_{n}$ where $\left.n=\operatorname{opt}(G)\right\}$.
\mathcal{G} is trivial even though graphs in it are arbitrarily complicated!

Question

Approximation* is easy on planar graphs and hard on some bounded degree graphs.
Where is the boundary?
What makes planar graphs easy and other graph classes hard?

* Getting a Polynomial-Time Approximation Scheme (PTAS) $=(1 \pm \varepsilon)$ approximation in polynomial time, $n^{f(\varepsilon)}$.
* For Max IS, Min VC, Max k-Cut. . .

Can we characterize classes \mathcal{G} such that $\operatorname{MIS}(\mathcal{G})$ has a PTAS?
Trouble: $\mathcal{G}=\left\{\right.$ graphs $G \cup P_{n}$ where $\left.n=\operatorname{opt}(G)\right\}$.
\mathcal{G} is trivial even though graphs in it are arbitrarily complicated!
We need (much) more expressive problems.

Constraint Satisfaction Problems (CSPs)

You probably know some of:
Max-2-SAT $\quad(x \vee \neg y) \wedge(y \vee \neg z) \wedge \ldots$
Max-Cut $\quad v \mapsto$ either L or R, maximize $\# u v: u \in \mathrm{~L}, v \in \mathrm{R}$
Max-5-Coloring $\quad v \mapsto$ color, maximize \#uv: $\operatorname{col}(u) \neq \operatorname{col}(v)$

Constraint Satisfaction Problems (CSPs)

In general Max-2-CSP the input is:

- graph G
- alphabet Σ_{v} for each vertex v
- constraint $C_{u v}$ for each edge $u v$

Choose x_{v} in Σ_{v} maximizing number of satisfied constraints.

Constraint Satisfaction Problems (CSPs)

In general Max-2-CSP the input is:

- graph G
primal or Gaifman graph
- alphabet Σ_{v} for each vertex v
- constraint $C_{u v}$ for each edge $u v$

Choose x_{v} in Σ_{v} maximizing number of satisfied constraints.

Constraint Satisfaction Problems (CSPs)

In Max-2-CSP (\mathcal{G}) the input is:

- graph $G \in \mathcal{G}$
primal or Gaifman graph
- alphabet Σ_{v} for each vertex v
- constraint $C_{u v}$ for each edge $u v$

Choose x_{v} in Σ_{v} maximizing number of satisfied constraints.

Exact solving

Theorem (Grohe, Schwentick, Segoufin '01)
2- $\operatorname{CSP}(\mathcal{G})$ is in $\mathrm{P} \quad \Leftrightarrow \mathcal{G}$ has bounded treewidth.

Exact solving

Theorem (Grohe, Schwentick, Segoufin '01)
$2-\operatorname{CSP}(\mathcal{G})$ is in $\mathrm{P} \quad \Leftrightarrow \mathcal{G}$ has bounded treewidth.
Grid Minor Theorem (Robertson \& Seymour '86)
G has large tw $\Leftrightarrow G$ contains a large grid as a minor

Exact solving

Theorem (Grohe, Schwentick, Segoufin '01)
2- $\operatorname{CSP}(\mathcal{G})$ is in $\mathrm{P} \quad \Leftrightarrow \mathcal{G}$ has bounded treewidth.
Theorem (Dvořák, Norin '18)
G has bounded treewidth iff every subgraph has a bounded balanced separation.

Exact solving

Theorem (Grohe, Schwentick, Segoufin '01)
2- $\operatorname{CSP}(\mathcal{G})$ is in $\mathrm{P} \quad \Leftrightarrow \mathcal{G}$ has bounded treewidth.
Theorem (Grohe '07)
$\operatorname{Hom}(\mathcal{G}, *)$ is $\mathrm{P} \quad \Leftrightarrow \quad \mathcal{G}$ has bounded treewidth up to hom. eq.
(for example, bipartite graphs are easy).

Fixed-parameter-tractability

Given G and k, decide of $\operatorname{opt}(G) \leq k$ in time $f(k) \cdot|G|^{c}$.
Given G and ϕ, decide $G \models \phi$ in time $f(|\phi|) \cdot|G|^{c}$.
For properties expressible by MSO_{2} formulas, this is possible in $\mathcal{G} \Leftrightarrow \mathcal{G}$ has bounded treewidth.

For properties expressible by FO formulas, this is possible in $\mathcal{G} \Leftrightarrow \mathcal{G}$ is nowhere-dense.

Sparse graph theory by: Gaifman, Courcelle, Arnborg, Lagergreen, Seese, Adler, Downey, Fellows, Frick, Grohe, Flum, Nešetřil, Ossona de Mendez, Dawar, Dvořák, Král, Thomas, Kreutzer, Siebertz, ...

Notions of sparsity

Lipton-Tarjan

If graph has $O(n)$ balanced separators, divide \& conquer. \Longrightarrow remove $\leq \varepsilon$ edges to get const components.

Lipton-Tarjan

If graph has $o(n)$ balanced separators, divide \& conquer. \Longrightarrow remove $\leq \varepsilon$ edges to get const components.
\mathcal{G} is hyperfinite if $\forall_{\varepsilon} \exists_{k}$ removing $\leq \varepsilon$ edges gets components $\leq k$. Works for some problems, not so much for general MaxCSP.

Lipton-Tarjan

If graph has $O(n)$ balanced separators, divide \& conquer.

$$
\Longrightarrow \text { remove } \leq \varepsilon \text { edges to get const components. }
$$

\mathcal{G} is hyperfinite if $\forall_{\varepsilon} \exists_{k}$ removing $\leq \varepsilon$ edges gets components $\leq k$. Works for some problems, not so much for general MaxCSP.

General intuition: either $o(n)$ separators or expanders?
One actually needs $O\left(\frac{n}{\log n}\right)$, up to $\log \log n$ factors.
(Moshkovitz, Shapira '15)

Baker's technique (FOCS'83)

In a planar graph, many problems have a PTAS as follows:

- color in layers by distance mod $\left\lceil\frac{1}{\varepsilon}\right\rceil$
- some color hits OPT at most ε times
- try each color c : remove it; remaining graph has bounded treewidth.

Baker's technique (FOCS'83)

In a planar graph, many problems have a PTAS as follows:

- color in layers by distance mod $\left\lceil\frac{1}{\varepsilon}\right\rceil$
- some color hits OPT at most ε times
- try each color c : remove it; remaining graph has bounded treewidth.

What other graph classes can be partitioned into layers of [...]
bounded treewidth?

- graphs embeddable in a surface S, H-minor-free graphs
- graph embeddable in plane with $\leq c$ crossings per edge
- some geometric intersection graphs

Dvořák '16
\mathcal{G} is fractionally-tw-fragile if for every $\varepsilon>0$, every $G \in \mathcal{G}$ has a distribution of sets $X \subseteq V(G)$ such that:

- removing X reduces treewidth to $\leq k(\varepsilon)$ and
- each vertex is removed with probability $\leq \varepsilon$.
- more general: 3-dimensional grids, ...
- simpler proofs
- more useful than just Lipton-Tarjan
- robust (treewidth \leftrightarrow treedepth, vertex \leftrightarrow edge, ...)

Notions of sparsity

Conjecture $\operatorname{Max}-\operatorname{CSP}(\mathcal{G})$ has a PTAS §
 \mathcal{G} is fragile

介 Theorem (Dvořák, RWWŽ)
Algorithm: simply run Sherali-Adams LP relaxation
\Downarrow Questions, questions...

- non-degenerate \Rightarrow hard?
- high girth 3-regular \Rightarrow hard?
- contains expanders \Rightarrow hard?

Notions of sparsity

Notions of sparsity

Notions of sparsity

Theorem (RWZŽ)
$\overline{\mathcal{G}}$ is hyperfinite §
\mathcal{G} is fragile \& bdd deg
In group theory:
Corollary (Elek)
uniformly locally amenable §
property A
In property testing: Question
Can results on property testing hyperfinite graphs be extended to unbdd degree?

Thank you for listening!

