Graph structure useful for approximation problems

Marcin Wrochna, University of Oxford

Based on work with Miguel Romero, Standa Živný. Figure based on Felix Reidl's.

Approximation^{*} is easy on planar graphs and hard on some bounded degree graphs. Where is the boundary?

What makes planar graphs easy and other graph classes hard?

Approximation* is easy on planar graphs and hard on some bounded degree graphs. Where is the boundary? What makes planar graphs easy and other graph classes hard?

* Getting a Polynomial-Time Approximation Scheme (PTAS) = $(1 \pm \varepsilon)$ approximation in polynomial time, $n^{f(\varepsilon)}$.

* For Max IS, Min VC, Max k-Cut...

Approximation* is easy on planar graphs and hard on some bounded degree graphs. Where is the boundary? What makes planar graphs easy and other graph classes hard?

* Getting a Polynomial-Time Approximation Scheme (PTAS) = $(1 \pm \varepsilon)$ approximation in polynomial time, $n^{f(\varepsilon)}$.

* For Max IS, Min VC, Max k-Cut...

Can we characterize classes \mathcal{G} such that MIS(\mathcal{G}) has a PTAS? Trouble: $\mathcal{G} = \{ \text{graphs } \mathcal{G} \cup \mathcal{P}_n \text{ where } n = \text{opt}(\mathcal{G}) \}.$ \mathcal{G} is trivial even though graphs in it are arbitrarily complicated!

Approximation* is easy on planar graphs and hard on some bounded degree graphs. Where is the boundary? What makes planar graphs easy and other graph classes hard?

* Getting a Polynomial-Time Approximation Scheme (PTAS) = $(1 \pm \varepsilon)$ approximation in polynomial time, $n^{f(\varepsilon)}$.

* For Max IS, Min VC, Max k-Cut...

Can we characterize classes \mathcal{G} such that MIS(\mathcal{G}) has a PTAS? Trouble: $\mathcal{G} = \{ \text{graphs } \mathcal{G} \cup \mathcal{P}_n \text{ where } n = \text{opt}(\mathcal{G}) \}.$ \mathcal{G} is trivial even though graphs in it are arbitrarily complicated!

We need (much) more expressive problems.

You probably know some of:

 $\begin{array}{ll} \mathsf{Max-2-SAT} & (x \lor \neg y) \land (y \lor \neg z) \land \dots \\ \mathsf{Max-Cut} & v \mapsto \mathsf{either } \mathsf{L} \mathsf{ or } \mathsf{R} \mathsf{, maximize } \#_{uv} \colon u \in \mathsf{L} \mathsf{, } v \in \mathsf{R} \\ \mathsf{Max-5-Coloring} & v \mapsto \mathsf{color} \mathsf{, maximize } \#_{uv} \colon \mathit{col}(u) \neq \mathit{col}(v) \end{array}$

In general Max-2-CSP the input is:

- graph G
- alphabet Σ_v for each vertex v
- constraint C_{uv} for each edge uv

Choose x_v in Σ_v maximizing number of satisfied constraints.

In general Max-2-CSP the input is:

- graph G

primal or Gaifman graph

- alphabet Σ_v for each vertex v
- constraint C_{uv} for each edge uv

Choose x_v in Σ_v maximizing number of satisfied constraints.

In Max-2-CSP(\mathcal{G}) the input is:

– graph $G \in \mathcal{G}$

primal or Gaifman graph

- alphabet Σ_v for each vertex v
- constraint C_{uv} for each edge uv

Choose x_v in Σ_v maximizing number of satisfied constraints.

Theorem (Grohe, Schwentick, Segoufin '01) 2-CSP(\mathcal{G}) is in P $\Leftrightarrow \mathcal{G}$ has bounded treewidth.

Theorem (Grohe, Schwentick, Segoufin '01) 2-CSP(\mathcal{G}) is in P $\Leftrightarrow \mathcal{G}$ has bounded treewidth.

Grid Minor Theorem (Robertson & Seymour '86) G has large tw \Leftrightarrow G contains a large grid as a minor

Theorem (Grohe, Schwentick, Segoufin '01) 2-CSP(\mathcal{G}) is in P $\Leftrightarrow \mathcal{G}$ has bounded treewidth.

Theorem (Dvořák, Norin '18)

G has bounded treewidth iff every subgraph has a bounded balanced separation.

Theorem (Grohe, Schwentick, Segoufin '01) 2-CSP(\mathcal{G}) is in P $\Leftrightarrow \mathcal{G}$ has bounded treewidth.

Theorem (Grohe '07)

Fixed-parameter-tractability

Given G and k, decide of $opt(G) \le k$ in time $f(k) \cdot |G|^c$. Given G and ϕ , decide $G \models \phi$ in time $f(|\phi|) \cdot |G|^c$.

For properties expressible by MSO_2 formulas, this is possible in $\mathcal{G} \iff \mathcal{G}$ has bounded treewidth.

For properties expressible by FO formulas, this is possible in $\mathcal{G} \iff \mathcal{G}$ is *nowhere-dense*.

Sparse graph theory by: Gaifman, Courcelle, Arnborg, Lagergreen, Seese, Adler, Downey, Fellows, Frick, Grohe, Flum, Nešetřil, Ossona de Mendez, Dawar, Dvořák, Král, Thomas, Kreutzer, Siebertz, ...

 \mathcal{G} is nowhere-dense $\label{eq:relation}$ $\forall_r \text{ not all graphs have an}$ $\leq r$ -subdivision in \mathcal{G}

Lipton-Tarjan

If graph has o(n) balanced separators, divide & conquer.

 \implies remove $\leq \varepsilon$ edges to get const components.

Lipton-Tarjan

If graph has o(n) balanced separators, divide & conquer. \implies remove $\leq \varepsilon$ edges to get const components.

 \mathcal{G} is *hyperfinite* if $\forall_{\varepsilon} \exists_k$ removing $\leq \varepsilon$ edges gets components $\leq k$. Works for some problems, not so much for general MaxCSP.

Lipton-Tarjan

If graph has o(n) balanced separators, divide & conquer. \implies remove $\leq \varepsilon$ edges to get const components.

 \mathcal{G} is hyperfinite if $\forall_{\varepsilon} \exists_k$ removing $\leq \varepsilon$ edges gets components $\leq k$. Works for some problems, not so much for general MaxCSP.

General intuition: either o(n) separators or expanders?

One actually needs $O(\frac{n}{\log n})$, up to $\log \log n$ factors. (Moshkovitz, Shapira '15)

Baker's technique (FOCS'83)

In a planar graph, many problems have a PTAS as follows:

- color in layers by distance mod $\left\lceil \frac{1}{\epsilon} \right\rceil$
- some color hits OPT at most ε times
- try each color c: remove it;

remaining graph has bounded treewidth.

Baker's technique (FOCS'83)

In a planar graph, many problems have a PTAS as follows:

- color in layers by distance mod $\left\lceil \frac{1}{\epsilon} \right\rceil$
- some color hits OPT at most ε times
- try each color c: remove it;

remaining graph has bounded treewidth.

What other graph classes can be partitioned into layers of [...] bounded treewidth?

- graphs embeddable in a surface S, H-minor-free graphs
- graph embeddable in plane with $\leq c$ crossings per edge
- some geometric intersection graphs

Dvořák '16

 \mathcal{G} is *fractionally*-tw-**fragile** if for every $\varepsilon > 0$, every $G \in \mathcal{G}$ has a distribution of sets $X \subseteq V(G)$ such that:

- removing X reduces treewidth to $\leq k(\varepsilon)$ and
- each vertex is removed with probability $\leq \varepsilon$.
- more general: 3-dimensional grids, ...
- simpler proofs
- more useful than just Lipton-Tarjan
- robust (treewidth \leftrightarrow treedepth, vertex \leftrightarrow edge, ...)

 $\begin{array}{c} \textbf{Conjecture} \\ \text{Max-CSP}(\mathcal{G}) \text{ has a PTAS} \\ & & \\ & & \\ & & \\ & & \mathcal{G} \text{ is fragile} \end{array}$

↑ Theorem (Dvořák, R<u>W</u>Ž) Algorithm: simply run Sherali-Adams LP relaxation

\Downarrow Questions, questions...

- non-degenerate \Rightarrow hard?
- high girth 3-regular \Rightarrow hard?
- contains expanders \Rightarrow hard?

