Graph structure useful for approximation problems
Marcin Wrochna, University of Oxford
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Question
Approximation® is easy on planar graphs
and hard on some bounded degree graphs.

Where is the boundary?
What makes planar graphs easy and other graph classes hard?
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Can we characterize classes G such that MIS(G) has a PTAS?

Trouble: G = {graphs G U P, where n = opt(G) }.
G is trivial even though graphs in it are arbitrarily complicated!
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What makes planar graphs easy and other graph classes hard?

* Getting a Polynomial-Time Approximation Scheme (PTAS)
= (1 £ &) approximation in polynomial time, n

* For Max IS, Min VC, Max k-Cut. ..
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Can we characterize classes G such that MIS(G) has a PTAS?

Trouble: G = {graphs G U P, where n = opt(G) }.
G is trivial even though graphs in it are arbitrarily complicated!

We need (much) more expressive problems.



Constraint Satisfaction Problems (CSPs)

You probably know some of:
Max-2-SAT  (xV-y)A(yV-z)A...
Max-Cut v +> either L or R, maximize #,,: u € L,v €R

Max-5-Coloring v +— color, maximize #, : col(u) # col(v)
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— alphabet ¥, for each vertex v

— constraint C,, for each edge uv

Choose x, in X, maximizing number of satisfied constraints.
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In Max-2-CSP(G) the input is:
— graph G € G primal or Gaifman graph
— alphabet ¥, for each vertex v

— constraint C,, for each edge uv

Choose x, in X, maximizing number of satisfied constraints.
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Exact solving
Theorem (Grohe, Schwentick, Segoufin '01)
2-CSP(G) isin P < G has bounded treewidth.
Grid Minor Theorem (Robertson & Seymour '86)

G has large tw < G contains a large grid as a minor



Exact solving

Theorem (Grohe, Schwentick, Segoufin '01)
2-CSP(G) isin P < G has bounded treewidth.

Theorem (Dvotak, Norin '18)

G has bounded treewidth iff
every subgraph has a bounded balanced separation.




Exact solving

Theorem (Grohe, Schwentick, Segoufin '01)
2-CSP(G) isin P < G has bounded treewidth.

Theorem (Grohe '07)
Hom(G, ) is P < G has bounded treewidth up to hom. eq.

(for example, bipartite graphs are easy).



Fixed-parameter-tractability

Given G and k, decide of opt(G) < k in time f(k) - |G|°.
Given G and ¢, decide G = ¢ in time f(|¢]) - |G|°.

For properties expressible by MSO, formulas,
this is possible in G < G has bounded treewidth.

For properties expressible by FO formulas,
this is possible in G < G is nowhere-dense.

Sparse graph theory by: Gaifman, Courcelle, Arnborg, Lagergreen,
Seese, Adler, Downey, Fellows, Frick, Grohe, Flum, Ne3et¥il, Ossona
de Mendez, Dawar, Dvo¥dk, Kral, Thomas, Kreutzer, Siebertz, ...
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Notions of sparsity
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Lipton-Tarjan
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Lipton-Tarjan

If graph has o(n) balanced separators, divide & conquer.
—> remove < ¢ edges to get const components.

G is hyperfinite if V. 3, removing < ¢ edges gets components < k.
Works for some problems, not so much for general MaxCSP.

General intuition: either o(n) separators or expanders?

n
logn

One actually needs O(

), up to loglog n factors.
(Moshkovitz, Shapira '15)



Baker's technique (FOCS'83)

In a planar graph, many problems have a PTAS as follows:

color in layers by distance mod [%]
some color hits OPT at most ¢ times

try each color c: remove it;
remaining graph has bounded treewidth.

\ )6\8

| /1; -




Baker's technique (FOCS'83)

In a planar graph, many problems have a PTAS as follows:
— color in layers by distance mod [:]
— some color hits OPT at most ¢ times
— try each color c: remove it;

remaining graph has bounded treewidth.




What other graph classes can be partitioned into layers of [...]
bounded treewidth?

— graphs embeddable in a surface S, H-minor-free graphs
— graph embeddable in plane with < ¢ crossings per edge
— some geometric intersection graphs
Dvorak '16
G is fractionally-tw-fragile if for every € > 0,
every G € G has a distribution of sets X C V(G) such that:
e removing X reduces treewidth to < k(&) and

e each vertex is removed with probability < e.

— more general: 3-dimensional grids, ...
— simpler proofs
— more useful than just Lipton-Tarjan

— robust (treewidth < treedepth, vertex <> edge, ...)
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Thank you for listening!



