Sparsity
 tutorial at PCC'20

Michał Pilipczuk

Faculty of Mathematics, Informatics, and Mechanics
University of Warsaw

September $17^{\text {th }}, 2020$

Organization

Organization

Rough plan:

9:15-10:00
10:15-11:00
11:15-12:00
12:15-13:00

Introduction
Generalized coloring numbers
Treedepth and low treedepth colorings
Uniform quasi-wideness and ladders

Organization

Rough plan:

$9: 15-10: 00$	Introduction
$10: 15-11: 00$	Generalized coloring numbers
$11: 15-12: 00$	Treedepth and low treedepth colorings
$12: 15-13: 00$	Uniform quasi-wideness and ladders

Format:

- Lecture interleaved with short exercises. \rightsquigarrow Be active!
- Understanding checks by writing $\mathbf{+ 1}$ in the chat.

Sparsity

Sparsity

Graphs in applications are often sparse.

Sparsity

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.

Sparsity

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

Sparsity

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

Sparsity

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

- Bounded degree?

Sparsity

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

- Bounded degree?
- Planar-like? Tree-like?

Sparsity

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

- Bounded degree?
- Planar-like? Tree-like?
- Fixed degree distribution?

Sparsity

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

- Bounded degree?
- Planar-like? Tree-like?
- Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

Sparsity

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

- Bounded degree?
- Planar-like? Tree-like?
- Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

Sparsity

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

- Bounded degree?
- Planar-like? Tree-like?
- Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;
2. elegant and interesting;

Sparsity

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

- Bounded degree?
- Planar-like? Tree-like?
- Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;
2. elegant and interesting;
3. useful in applications.

Sparsity

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

- Bounded degree?
- Planar-like? Tree-like?
- Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;
2. elegant and interesting;
3. useful in applications.

Sparsity: a young area of graph theory that \pm achieves all of the above.

Measuring sparsity

Measuring sparsity

Q: What does it mean that a graph is sparse?

Measuring sparsity

Q: What does it mean that a graph is sparse?
Attempt 1. A graph G is sparse if it has a linear number of edges.

Measuring sparsity

Q: What does it mean that a graph is sparse?
Attempt 1. A graph G is sparse if it has a linear number of edges.

- Formally, $|E(G)| \leqslant c \cdot|V(G)|$ for some constant c.

Measuring sparsity

Q: What does it mean that a graph is sparse?
Attempt 1. A graph G is sparse if it has a linear number of edges.

- Formally, $|E(G)| \leqslant c \cdot|V(G)|$ for some constant c.

$$
\operatorname{avgdeg}(G)=\frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|}=\frac{2|E(G)|}{|V(G)|}
$$

Measuring sparsity

Q: What does it mean that a graph is sparse?
Attempt 1. A graph G is sparse if it has a linear number of edges.

- Formally, $|E(G)| \leqslant c \cdot|V(G)|$ for some constant c.

$$
\operatorname{avgdeg}(G)=\frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|}=\frac{2|E(G)|}{|V(G)|}
$$

- Equivalently, average degree in G is bounded by $2 c$.

Measuring sparsity

Q: What does it mean that a graph is sparse?
Attempt 1. A graph G is sparse if it has a linear number of edges.

- Formally, $|E(G)| \leqslant c \cdot|V(G)|$ for some constant c.

$$
\operatorname{avgdeg}(G)=\frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|}=\frac{2|E(G)|}{|V(G)|}
$$

- Equivalently, average degree in G is bounded by $2 c$.

Ex 1. Maximum degree $\leqslant d \Rightarrow$ Average degree $\leqslant d$.

Measuring sparsity

Q: What does it mean that a graph is sparse?
Attempt 1. A graph G is sparse if it has a linear number of edges.

- Formally, $|E(G)| \leqslant c \cdot|V(G)|$ for some constant c.

$$
\operatorname{avgdeg}(G)=\frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|}=\frac{2|E(G)|}{|V(G)|}
$$

- Equivalently, average degree in G is bounded by $2 c$.

Ex 1. Maximum degree $\leqslant d \Rightarrow$ Average degree $\leqslant d$.
Ex 2. Planar graph has $\leqslant 3 n-6$ edges \Rightarrow Average degree <6.

Measuring sparsity

Q: What does it mean that a graph is sparse?
Attempt 1. A graph G is sparse if it has a linear number of edges.

- Formally, $|E(G)| \leqslant c \cdot|V(G)|$ for some constant c.

$$
\operatorname{avgdeg}(G)=\frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|}=\frac{2|E(G)|}{|V(G)|}
$$

- Equivalently, average degree in G is bounded by $2 c$.

Ex 1. Maximum degree $\leqslant d \Rightarrow$ Average degree $\leqslant d$.
Ex 2. Planar graph has $\leqslant 3 n-6$ edges \Rightarrow Average degree <6.
Issue: A complete graph on k vertices plus k^{2} isolated vertices.

Measuring sparsity

Q: What does it mean that a graph is sparse?
Attempt 1. A graph G is sparse if it has a linear number of edges.

- Formally, $|E(G)| \leqslant c \cdot|V(G)|$ for some constant c.

$$
\operatorname{avgdeg}(G)=\frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|}=\frac{2|E(G)|}{|V(G)|}
$$

- Equivalently, average degree in G is bounded by $2 c$.

Ex 1. Maximum degree $\leqslant d \Rightarrow$ Average degree $\leqslant d$.
Ex 2. Planar graph has $\leqslant 3 n-6$ edges \Rightarrow Average degree <6.
Issue: A complete graph on k vertices plus k^{2} isolated vertices.

- Average degree smaller than 1.

Measuring sparsity

Q: What does it mean that a graph is sparse?
Attempt 1. A graph G is sparse if it has a linear number of edges.

- Formally, $|E(G)| \leqslant c \cdot|V(G)|$ for some constant c.

$$
\operatorname{avgdeg}(G)=\frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|}=\frac{2|E(G)|}{|V(G)|}
$$

- Equivalently, average degree in G is bounded by $2 c$.

Ex 1. Maximum degree $\leqslant d \Rightarrow$ Average degree $\leqslant d$.
Ex 2. Planar graph has $\leqslant 3 n-6$ edges \Rightarrow Average degree <6.
Issue: A complete graph on k vertices plus k^{2} isolated vertices.

- Average degree smaller than 1.
- Contains a dense subgraph.

Measuring sparsity

Measuring sparsity

Attempt 2. Every subgraph of G has a linear number of edges.

Measuring sparsity

Attempt 2. Every subgraph of G has a linear number of edges.

- We define maximum average degree of G as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \operatorname{avgdeg}(H) .
$$

Measuring sparsity

Attempt 2. Every subgraph of G has a linear number of edges.

- We define maximum average degree of G as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \operatorname{avgdeg}(H) .
$$

- G is sparse if $\operatorname{mad}(G) \leqslant c$ for some constant c.

Measuring sparsity

Attempt 2. Every subgraph of G has a linear number of edges.

- We define maximum average degree of G as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \operatorname{avgdeg}(H) .
$$

- G is sparse if $\operatorname{mad}(G) \leqslant c$ for some constant c.

Ex 1. G has maximum degree $\leqslant d \Rightarrow \operatorname{mad}(G) \leqslant d$.

Measuring sparsity

Attempt 2. Every subgraph of G has a linear number of edges.

- We define maximum average degree of G as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \operatorname{avgdeg}(H) .
$$

- G is sparse if $\operatorname{mad}(G) \leqslant c$ for some constant c.

Ex 1. G has maximum degree $\leqslant d \Rightarrow \operatorname{mad}(G) \leqslant d$.
Ex 2. G is planar $\Rightarrow \operatorname{mad}(G)<6$.

Measuring sparsity

Attempt 2. Every subgraph of G has a linear number of edges.

- We define maximum average degree of G as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \operatorname{avgdeg}(H) .
$$

- G is sparse if $\operatorname{mad}(G) \leqslant c$ for some constant c.

Ex 1. G has maximum degree $\leqslant d \Rightarrow \operatorname{mad}(G) \leqslant d$.
Ex2. G is planar $\Rightarrow \operatorname{mad}(G)<6$.
Issue: A subdivided complete graph.

Measuring sparsity

Attempt 2. Every subgraph of G has a linear number of edges.

- We define maximum average degree of G as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \operatorname{avgdeg}(H) .
$$

- G is sparse if $\operatorname{mad}(G) \leqslant c$ for some constant c.

Ex 1. G has maximum degree $\leqslant d \Rightarrow \operatorname{mad}(G) \leqslant d$.
Ex 2. G is planar $\Rightarrow \operatorname{mad}(G)<6$.
Issue: A subdivided complete graph.

- Every subgraph has avgdeg $\leqslant 4$.

Measuring sparsity

Attempt 2. Every subgraph of G has a linear number of edges.

- We define maximum average degree of G as

$$
\operatorname{mad}(G):=\max _{H \subseteq G} \operatorname{avgdeg}(H) .
$$

- G is sparse if $\operatorname{mad}(G) \leqslant c$ for some constant c.

Ex 1. G has maximum degree $\leqslant d \Rightarrow \operatorname{mad}(G) \leqslant d$.
Ex 2. G is planar $\Rightarrow \operatorname{mad}(G)<6$.
Issue: A subdivided complete graph.

- Every subgraph has avgdeg $\leqslant 4$.
- Is this graph really sparse?

Measuring sparsity

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

- We can construct a theory around the parameter $\operatorname{mad}(\cdot)$.

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

- We can construct a theory around the parameter $\operatorname{mad}(\cdot)$.
$-\operatorname{mad}(\cdot)$ is essentially equivalent to arboricity and degeneracy.

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

- We can construct a theory around the parameter $\operatorname{mad}(\cdot)$.
$-\operatorname{mad}(\cdot)$ is essentially equivalent to arboricity and degeneracy.
- These connections are useful, but not really very deep.

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

- We can construct a theory around the parameter $\operatorname{mad}(\cdot)$.
$-\operatorname{mad}(\cdot)$ is essentially equivalent to arboricity and degeneracy.
- These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is dense.

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

- We can construct a theory around the parameter $\operatorname{mad}(\cdot)$.
$-\operatorname{mad}(\cdot)$ is essentially equivalent to arboricity and degeneracy.
- These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is dense.

- Reason: It contains a dense substructure visible at "depth" 1.

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

- We can construct a theory around the parameter $\operatorname{mad}(\cdot)$.
$-\operatorname{mad}(\cdot)$ is essentially equivalent to arboricity and degeneracy.
- These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is dense.

- Reason: It contains a dense substructure visible at "depth" 1.
- Need: A notion of embedding that would capture this.

Minor order

Minor order

Definition

H is a minor of $G \quad \Leftrightarrow$
H is obtained from a subgraph of G by contracting connected subgraphs

Minor order

Definition

H is a minor of $G \quad \Leftrightarrow$

H is obtained from a subgraph of G by contracting connected subgraphs

Theorem (Kuratowski; Wagner)

Planar graphs are exactly $\left\{K_{5}, K_{3,3}\right\}$-minor-free graphs.

Minor order

Definition

H is a minor of $G \quad \Leftrightarrow$

H is obtained from a subgraph of G by contracting connected subgraphs

Theorem (Kuratowski; Wagner)

Planar graphs are exactly $\left\{K_{5}, K_{3,3}\right\}$-minor-free graphs.
Theorem (Robertson and Seymour)
For every $t \in \mathbb{N}$, every K_{t}-minor-free graph looks like this:

Shallow minors

Attempt 3. Graphs excluding K_{t} as a minor, for some $t \in \mathbb{N}$.

Shallow minors

Attempt 3. Graphs excluding K_{t} as a minor, for some $t \in \mathbb{N}$.
Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Shallow minors

Attempt 3. Graphs excluding K_{t} as a minor, for some $t \in \mathbb{N}$.
Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Shallow minors

Attempt 3. Graphs excluding K_{t} as a minor, for some $t \in \mathbb{N}$.
Issue: Graphs with maxdeg 3 admit all complete graphs as minors.
Ergo: Excluding minors leads to an interesting theory, but this is not the theory we are after.

Shallow minors

Attempt 3. Graphs excluding K_{t} as a minor, for some $t \in \mathbb{N}$.
Issue: Graphs with maxdeg 3 admit all complete graphs as minors.
Ergo: Excluding minors leads to an interesting theory, but this is not the theory we are after.

Idea: Think about local minors.

Shallow minors

Attempt 3. Graphs excluding K_{t} as a minor, for some $t \in \mathbb{N}$.
Issue: Graphs with maxdeg 3 admit all complete graphs as minors.
Ergo: Excluding minors leads to an interesting theory, but this is not the theory we are after.

Idea: Think about local minors.

Definition

H is a depth- d minor of G \Leftrightarrow
H is obtained from a subgraph of G by contracting subgraphs of radius $\leqslant d$

Shallow minors

Attempt 3. Graphs excluding K_{t} as a minor, for some $t \in \mathbb{N}$.
Issue: Graphs with maxdeg 3 admit all complete graphs as minors.
Ergo: Excluding minors leads to an interesting theory, but this is not the theory we are after.

Idea: Think about local minors.

Definition

H is a depth- d minor of G \Leftrightarrow
H is obtained from a subgraph of G by contracting subgraphs of radius $\leqslant d$

depth -0 minors =

Shallow minors

Attempt 3. Graphs excluding K_{t} as a minor, for some $t \in \mathbb{N}$.
Issue: Graphs with maxdeg 3 admit all complete graphs as minors.
Ergo: Excluding minors leads to an interesting theory, but this is not the theory we are after.

Idea: Think about local minors.

Definition

H is a depth- d minor of G \Leftrightarrow
H is obtained from a subgraph of G by contracting subgraphs of radius $\leqslant d$

depth-0 minors $=$ subgraphs

Notions of sparsity

Notions of sparsity

Intuition: Sparsity \Leftrightarrow Exclusion of dense structures at every fixed depth

Notions of sparsity

Intuition: Sparsity \Leftrightarrow Exclusion of dense structures at every fixed depth

Definition

$$
\begin{aligned}
\nabla_{d}(G) & :=\sup \{\operatorname{avgdeg}(H): H \text { is a depth- } d \text { minor of } G\} \\
\omega_{d}(G) & :=\sup \left\{t: K_{t} \text { is a depth- } d \text { minor of } G\right\} .
\end{aligned}
$$

Notions of sparsity

Intuition: Sparsity \Leftrightarrow Exclusion of dense structures at every fixed depth

Definition

$$
\begin{aligned}
\nabla_{d}(G) & :=\sup \{\operatorname{avgdeg}(H): H \text { is a depth- } d \text { minor of } G\} \\
\omega_{d}(G) & :=\sup \left\{t: K_{t} \text { is a depth- } d \text { minor of } G\right\} .
\end{aligned}
$$

Note: \quad depth- 0 minors $=$ subgraphs $\quad \rightsquigarrow \quad \nabla_{0}(G)=$?

Notions of sparsity

Intuition: Sparsity \Leftrightarrow Exclusion of dense structures at every fixed depth

Definition

$$
\begin{aligned}
\nabla_{d}(G) & :=\sup \{\operatorname{avgdeg}(H): H \text { is a depth- } d \text { minor of } G\} \\
\omega_{d}(G) & :=\sup \left\{t: K_{t} \text { is a depth- } d \text { minor of } G\right\} .
\end{aligned}
$$

Note: \quad depth -0 minors $=$ subgraphs $\quad \rightsquigarrow \quad \nabla_{0}(G)=\operatorname{mad}(G)$.

Notions of sparsity

Intuition: Sparsity \Leftrightarrow Exclusion of dense structures at every fixed depth

Definition

$$
\begin{aligned}
\nabla_{d}(G) & :=\sup \{\operatorname{avgdeg}(H): H \text { is a depth- } d \text { minor of } G\} \\
\omega_{d}(G) & :=\sup \left\{t: K_{t} \text { is a depth- } d \text { minor of } G\right\} .
\end{aligned}
$$

Note: \quad depth -0 minors $=$ subgraphs $\quad \rightsquigarrow \quad \nabla_{0}(G)=\operatorname{mad}(G)$.
For a class of graphs \mathcal{C}, we write:

$$
\nabla_{d}(\mathcal{C}):=\sup _{G \in \mathcal{C}} \nabla_{d}(G) \quad \text { and } \quad \omega_{d}(\mathcal{C}):=\sup _{G \in \mathcal{C}} \omega_{d}(G)
$$

Notions of sparsity

Intuition: Sparsity \Leftrightarrow Exclusion of dense structures at every fixed depth

Definition

$$
\begin{aligned}
\nabla_{d}(G) & :=\sup \{\operatorname{avgdeg}(H): H \text { is a depth- } d \text { minor of } G\} \\
\omega_{d}(G) & :=\sup \left\{t: K_{t} \text { is a depth- } d \text { minor of } G\right\} .
\end{aligned}
$$

Note: \quad depth -0 minors $=$ subgraphs $\quad \rightsquigarrow \quad \nabla_{0}(G)=\operatorname{mad}(G)$.
For a class of graphs \mathcal{C}, we write:

$$
\nabla_{d}(\mathcal{C}):=\sup _{G \in \mathcal{C}} \nabla_{d}(G) \quad \text { and } \quad \omega_{d}(\mathcal{C}):=\sup _{G \in \mathcal{C}} \omega_{d}(G)
$$

Definition

\mathcal{C} has bounded expansion if $\nabla_{d}(\mathcal{C})$ is finite for all $d \in \mathbb{N}$.
\mathcal{C} is nowhere dense if $\omega_{d}(\mathcal{C})$ is finite for all $d \in \mathbb{N}$.

Notions of sparsity

Equivalently:

Notions of sparsity

Equivalently:

\mathcal{C} has bounded expansion if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. $\operatorname{avgdeg}(H) \leqslant c(d)$ whenever H is a depth- d minor of some $G \in \mathcal{C}$.

Notions of sparsity

Equivalently:

\mathcal{C} has bounded expansion if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. $\operatorname{avgdeg}(H) \leqslant c(d)$ whenever H is a depth- d minor of some $G \in \mathcal{C}$.
\mathcal{C} is nowhere dense if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t.
$K_{t(d)}$ is not a depth- d minor of any $G \in \mathcal{C}$.

Notions of sparsity

Equivalently:

\mathcal{C} has bounded expansion if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. $\operatorname{avgdeg}(H) \leqslant c(d)$ whenever H is a depth- d minor of some $G \in \mathcal{C}$.
\mathcal{C} is nowhere dense if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t.
$K_{t(d)}$ is not a depth- d minor of any $G \in \mathcal{C}$.

Key idea: Sparsity is a property of a class of graphs.

Notions of sparsity

Equivalently:

\mathcal{C} has bounded expansion if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. $\operatorname{avgdeg}(H) \leqslant c(d)$ whenever H is a depth- d minor of some $G \in \mathcal{C}$.
\mathcal{C} is nowhere dense if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t.
$K_{t(d)}$ is not a depth- d minor of any $G \in \mathcal{C}$.

Key idea: Sparsity is a property of a class of graphs.

- It is a limit property of graphs from the class.

Notions of sparsity

Equivalently:

\mathcal{C} has bounded expansion if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. $\operatorname{avgdeg}(H) \leqslant c(d)$ whenever H is a depth- d minor of some $G \in \mathcal{C}$.
\mathcal{C} is nowhere dense if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t.
$K_{t(d)}$ is not a depth- d minor of any $G \in \mathcal{C}$.

Key idea: Sparsity is a property of a class of graphs.

- It is a limit property of graphs from the class.
- Can be formalized using standard limit constructions (P, Toruńczyk).

Notions of sparsity

Equivalently:

\mathcal{C} has bounded expansion if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. $\operatorname{avgdeg}(H) \leqslant c(d)$ whenever H is a depth- d minor of some $G \in \mathcal{C}$.
\mathcal{C} is nowhere dense if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t.
$K_{t(d)}$ is not a depth- d minor of any $G \in \mathcal{C}$.

Key idea: Sparsity is a property of a class of graphs.

- It is a limit property of graphs from the class.
- Can be formalized using standard limit constructions (P, Toruńczyk).
- Classes of graphs as basic objects of interest.

Examples and relations

1. Every class of bounded degree has bounded expansion.

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth- d minors have max degree $\leqslant \Delta^{d+1}$.

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth- d minors have max degree $\leqslant \Delta^{d+1}$.
2. Every class that excludes some minor has bounded expansion.

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth- d minors have max degree $\leqslant \Delta^{d+1}$.
2. Every class that excludes some minor has bounded expansion.

Sol: K_{t}-minor-free graphs have avgdeg $\mathcal{O}(t \sqrt{\log t})$ and are minor-closed.

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth- d minors have max degree $\leqslant \Delta^{d+1}$.
2. Every class that excludes some minor has bounded expansion.

Sol: K_{t}-minor-free graphs have avgdeg $\mathcal{O}(t \sqrt{\log t})$ and are minor-closed.
3. Every class of bounded expansion is nowhere dense.

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth- d minors have max degree $\leqslant \Delta^{d+1}$.
2. Every class that excludes some minor has bounded expansion.

Sol: K_{t}-minor-free graphs have avgdeg $\mathcal{O}(t \sqrt{\log t})$ and are minor-closed.
3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth- d minors have max degree $\leqslant \Delta^{d+1}$.
2. Every class that excludes some minor has bounded expansion.

Sol: K_{t}-minor-free graphs have avgdeg $\mathcal{O}(t \sqrt{\log t})$ and are minor-closed.
3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.
4. Consider the class $\mathcal{C}=\{G: \Delta(G) \leqslant \operatorname{girth}(G)\}$.

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth- d minors have max degree $\leqslant \Delta^{d+1}$.
2. Every class that excludes some minor has bounded expansion.

Sol: K_{t}-minor-free graphs have avgdeg $\mathcal{O}(t \sqrt{\log t})$ and are minor-closed.
3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.
4. Consider the class $\mathcal{C}=\{G: \Delta(G) \leqslant \operatorname{girth}(G)\}$.

4a: Show that \mathcal{C} is nowhere dense.

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth- d minors have max degree $\leqslant \Delta^{d+1}$.
2. Every class that excludes some minor has bounded expansion.

Sol: K_{t}-minor-free graphs have avgdeg $\mathcal{O}(t \sqrt{\log t})$ and are minor-closed.
3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.
4. Consider the class $\mathcal{C}=\{G: \Delta(G) \leqslant \operatorname{girth}(G)\}$.

4a: Show that \mathcal{C} is nowhere dense.
Sol: $\omega_{d}(G) \geqslant 3 \Rightarrow d \geqslant \operatorname{girth}(G) / 9 \Rightarrow d \geqslant \Delta(G) / 9 \Rightarrow \omega_{d}(G) \leqslant(9 d)^{d}$.

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth- d minors have max degree $\leqslant \Delta^{d+1}$.
2. Every class that excludes some minor has bounded expansion.

Sol: K_{t}-minor-free graphs have avgdeg $\mathcal{O}(t \sqrt{\log t})$ and are minor-closed.
3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.
4. Consider the class $\mathcal{C}=\{G: \Delta(G) \leqslant \operatorname{girth}(G)\}$.

4a: Show that \mathcal{C} is nowhere dense.
Sol: $\omega_{d}(G) \geqslant 3 \Rightarrow d \geqslant \operatorname{girth}(G) / 9 \Rightarrow d \geqslant \Delta(G) / 9 \Rightarrow \omega_{d}(G) \leqslant(9 d)^{d}$.
4b: Show that \mathcal{C} does not have bounded expansion.

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth- d minors have max degree $\leqslant \Delta^{d+1}$.
2. Every class that excludes some minor has bounded expansion.

Sol: K_{t}-minor-free graphs have avgdeg $\mathcal{O}(t \sqrt{\log t})$ and are minor-closed.
3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.
4. Consider the class $\mathcal{C}=\{G: \Delta(G) \leqslant \operatorname{girth}(G)\}$.

4a: Show that \mathcal{C} is nowhere dense.
Sol: $\omega_{d}(G) \geqslant 3 \Rightarrow d \geqslant \operatorname{girth}(G) / 9 \Rightarrow d \geqslant \Delta(G) / 9 \Rightarrow \omega_{d}(G) \leqslant(9 d)^{d}$.
4b: Show that \mathcal{C} does not have bounded expansion.
Sol: Erdős random construction.

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth- d minors have max degree $\leqslant \Delta^{d+1}$.
2. Every class that excludes some minor has bounded expansion.

Sol: K_{t}-minor-free graphs have avgdeg $\mathcal{O}(t \sqrt{\log t})$ and are minor-closed.
3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.
4. Consider the class $\mathcal{C}=\{G: \Delta(G) \leqslant \operatorname{girth}(G)\}$.

4a: Show that \mathcal{C} is nowhere dense.
Sol: $\omega_{d}(G) \geqslant 3 \Rightarrow d \geqslant \operatorname{girth}(G) / 9 \Rightarrow d \geqslant \Delta(G) / 9 \Rightarrow \omega_{d}(G) \leqslant(9 d)^{d}$.
4b: Show that \mathcal{C} does not have bounded expansion.
Sol: Erdős random construction.
Fact. \mathcal{C} is nowhere dense $\Rightarrow \forall d, \varepsilon>0, \nabla_{d}(G) \leqslant \mathcal{O}\left(n^{\varepsilon}\right)$ for all $G \in \mathcal{C}$.

The World of Sparsity

Equivalent characterizations

Sparsity of shallow minors

Equivalent characterizations

Generalized coloring numbers

00000000000000

Sparsity of shallow minors

Degeneracy

Weak coloring number

Equivalent characterizations

Generalized coloring numbers

Sparsity of shallow minors

Uniform quasi-wideness

Equivalent characterizations

Generalized coloring numbers

Sparsity of shallow minors

Uniform quasi-wideness

Neighborhood complexity

Equivalent characterizations

Part 2

Generalized coloring numbers

Stability

Sparsity of shallow top-minors

Fraternal augmentations

Part 3

Low treedepth colorings

Uniform quasi-wideness
Part 4

Sparsity of shallow minors

k-Helly property

Splitter game

Neighborhood complexity

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

- Equivalence shows that we are working with fundamental notions.

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a tool.

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

- Goal: Describe structural properties implied by sparsity.

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

- Goal: Describe structural properties implied by sparsity.

These properties can be used to design efficient algorithms.

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

- Goal: Describe structural properties implied by sparsity.

These properties can be used to design efficient algorithms.

- Areas: Parameterized, approximation, and distributed algorithms.

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

- Goal: Describe structural properties implied by sparsity.

These properties can be used to design efficient algorithms.

- Areas: Parameterized, approximation, and distributed algorithms.
- Applicable to problems of local nature.

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

- Goal: Describe structural properties implied by sparsity.

These properties can be used to design efficient algorithms.

- Areas: Parameterized, approximation, and distributed algorithms.
- Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

- Goal: Describe structural properties implied by sparsity.

These properties can be used to design efficient algorithms.

- Areas: Parameterized, approximation, and distributed algorithms.
- Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.
Theorem (Grohe, Kreutzer, Siebertz)
Suppose \mathcal{C} is subgraph-closed.
Then \mathcal{C} is nowhere dense \Leftrightarrow FO Model Checking is FPT on \mathcal{C}.

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

- Goal: Describe structural properties implied by sparsity.

These properties can be used to design efficient algorithms.

- Areas: Parameterized, approximation, and diftributed algorithms.
- Applicable to problems of local nature. \downarrow

Sparsity delimits tractability of First Order logic on graphs.
Theorem (Grohe, Kreutzer, Siebertz)
Suppose \mathcal{C} is subgraph-closed.
Then \mathcal{C} is nowhere dense \Leftrightarrow FO Model Checking is FPT on \mathcal{C}.

Part 2:

Generalized coloring numbers

Degeneracy

Definition

G is d-degenerate \Leftrightarrow Every subgraph of G has a vertex of degree $\leqslant d$. $\operatorname{dgn}(G):=$ least d for which G is d-degenerate.

Degeneracy

Definition

G is d-degenerate \Leftrightarrow Every subgraph of G has a vertex of degree $\leqslant d$. $\operatorname{dgn}(G):=$ least d for which G is d-degenerate.

1. Prove that $\operatorname{mad}(G) / 2 \leqslant \operatorname{dgn}(G) \leqslant \operatorname{mad}(G)$.

Degeneracy

Definition

G is d-degenerate \Leftrightarrow Every subgraph of G has a vertex of degree $\leqslant d$. $\operatorname{dgn}(G):=$ least d for which G is d-degenerate.

1. Prove that $\operatorname{mad}(G) / 2 \leqslant \operatorname{dgn}(G) \leqslant \operatorname{mad}(G)$.
right: mindeg \leqslant avgdeg

Degeneracy

Definition

G is d-degenerate \Leftrightarrow Every subgraph of G has a vertex of degree $\leqslant d$. $\operatorname{dgn}(G):=$ least d for which G is d-degenerate.

1. Prove that $\operatorname{mad}(G) / 2 \leqslant \operatorname{dgn}(G) \leqslant \operatorname{mad}(G)$.
right: mindeg \leqslant avgdeg
left: $\quad|E(H)| \leqslant \operatorname{dgn}(G) \cdot|V(H)|$ by removing vertices one by one.

Degeneracy

Definition

G is d-degenerate \Leftrightarrow Every subgraph of G has a vertex of degree $\leqslant d$. $\operatorname{dgn}(G):=$ least d for which G is d-degenerate.

1. Prove that $\operatorname{mad}(G) / 2 \leqslant \operatorname{dgn}(G) \leqslant \operatorname{mad}(G)$.
right: mindeg \leqslant avgdeg
left: $\quad|E(H)| \leqslant \operatorname{dgn}(G) \cdot|V(H)|$ by removing vertices one by one.
2. Prove that G is d-degenerate \Leftrightarrow

G has a vertex ordering where each vertex has $\leqslant d$ neighbors to the left.

Degeneracy

Definition

G is d-degenerate \Leftrightarrow Every subgraph of G has a vertex of degree $\leqslant d$. $\operatorname{dgn}(G):=$ least d for which G is d-degenerate.

1. Prove that $\operatorname{mad}(G) / 2 \leqslant \operatorname{dgn}(G) \leqslant \operatorname{mad}(G)$.
right: mindeg \leqslant avgdeg
left: $\quad|E(H)| \leqslant \operatorname{dgn}(G) \cdot|V(H)|$ by removing vertices one by one.
2. Prove that G is d-degenerate \Leftrightarrow

G has a vertex ordering where each vertex has $\leqslant d$ neighbors to the left.
(\Rightarrow) : extract vertices one by one

Degeneracy

Definition

G is d-degenerate \Leftrightarrow Every subgraph of G has a vertex of degree $\leqslant d$. $\operatorname{dgn}(G):=$ least d for which G is d-degenerate.

1. Prove that $\operatorname{mad}(G) / 2 \leqslant \operatorname{dgn}(G) \leqslant \operatorname{mad}(G)$.
right: mindeg \leqslant avgdeg
left: $|E(H)| \leqslant \operatorname{dgn}(G) \cdot|V(H)|$ by removing vertices one by one.
2. Prove that G is d-degenerate \Leftrightarrow

G has a vertex ordering where each vertex has $\leqslant d$ neighbors to the left.
(\Rightarrow) : extract vertices one by one
(\Leftarrow) : examine the rightmost vertex

Degeneracy

Definition

G is d-degenerate \Leftrightarrow Every subgraph of G has a vertex of degree $\leqslant d$. $\operatorname{dgn}(G):=$ least d for which G is d-degenerate.

1. Prove that $\operatorname{mad}(G) / 2 \leqslant \operatorname{dgn}(G) \leqslant \operatorname{mad}(G)$.
right: mindeg \leqslant avgdeg
left: $\quad|E(H)| \leqslant \operatorname{dgn}(G) \cdot|V(H)|$ by removing vertices one by one.
2. Prove that G is d-degenerate \Leftrightarrow

G has a vertex ordering where each vertex has $\leqslant d$ neighbors to the left.
(\Rightarrow) : extract vertices one by one
(\Leftarrow): examine the rightmost vertex
3. d-degenerate graphs are $(d+1)$-colorable

Degeneracy

Definition

G is d-degenerate \Leftrightarrow Every subgraph of G has a vertex of degree $\leqslant d$. $\operatorname{dgn}(G):=$ least d for which G is d-degenerate.

1. Prove that $\operatorname{mad}(G) / 2 \leqslant \operatorname{dgn}(G) \leqslant \operatorname{mad}(G)$.
right: mindeg \leqslant avgdeg
left: $|E(H)| \leqslant \operatorname{dgn}(G) \cdot|V(H)|$ by removing vertices one by one.
2. Prove that G is d-degenerate \Leftrightarrow

G has a vertex ordering where each vertex has $\leqslant d$ neighbors to the left.
(\Rightarrow) : extract vertices one by one
(\Leftarrow) : examine the rightmost vertex
3. d-degenerate graphs are $(d+1)$-colorable

Sol: Greedy left-to-right coloring on the ordering.

Generalizing degeneracy

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.
Degeneracy orderings $\rightsquigarrow m \operatorname{mad}(\cdot)$, which concerns depth-0 minors.

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.
Degeneracy orderings $\rightsquigarrow m \operatorname{mad}(\cdot)$, which concerns depth-0 minors.
Idea: Introduce a generalization of degeneracy orderings to larger depth.

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.
Degeneracy orderings $\rightsquigarrow \rightsquigarrow \operatorname{mad}(\cdot)$, which concerns depth-0 minors.
Idea: Introduce a generalization of degeneracy orderings to larger depth.
These are called generalized coloring numbers.

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.
Degeneracy orderings $\rightsquigarrow \rightsquigarrow \operatorname{mad}(\cdot)$, which concerns depth-0 minors.
Idea: Introduce a generalization of degeneracy orderings to larger depth.
These are called generalized coloring numbers.
There are three natural ways to make the generalization.

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.
Degeneracy orderings $\rightsquigarrow \rightsquigarrow \operatorname{mad}(\cdot)$, which concerns depth-0 minors.
Idea: Introduce a generalization of degeneracy orderings to larger depth.
These are called generalized coloring numbers.
There are three natural ways to make the generalization.

Suppose $d \in \mathbb{N}, G$ is a graph, and σ is a vertex ordering.

[^0]
Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.
Degeneracy orderings $\rightsquigarrow \rightsquigarrow \operatorname{mad}(\cdot)$, which concerns depth-0 minors.
Idea: Introduce a generalization of degeneracy orderings to larger depth.
These are called generalized coloring numbers.
There are three natural ways to make the generalization.

Suppose $d \in \mathbb{N}, G$ is a graph, and σ is a vertex ordering.
Consider any vertex v.
$0000000000000000000000000000000 \longrightarrow$

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.
Degeneracy orderings $\rightsquigarrow \rightsquigarrow \operatorname{mad}(\cdot)$, which concerns depth-0 minors.
Idea: Introduce a generalization of degeneracy orderings to larger depth.
These are called generalized coloring numbers.
There are three natural ways to make the generalization.

Suppose $d \in \mathbb{N}, G$ is a graph, and σ is a vertex ordering.
Consider any vertex v.
Want: Define " σ-smaller neighbors" of v at "depth" d.
$0000000000000000000000000000000 \rightarrow$

Bounded depth reachability

Bounded depth reachability

D1: $u \leqslant_{\sigma} v$ is weakly d-reachable from $v \Leftrightarrow$
There is a v-to- u path P of length $\leqslant d$ that is entirely $\geqslant_{\sigma} u$.

Bounded depth reachability

D1: $u \leqslant_{\sigma} v$ is weakly d-reachable from $v \Leftrightarrow$
There is a v-to- u path P of length $\leqslant d$ that is entirely $\geqslant_{\sigma} u$. WReach $_{d}[G, \sigma, v]:=\left\{u \leqslant_{\sigma} v: u\right.$ is weakly d-reachable from $\left.v\right\}$. $0000000000000000000000000000000 \longrightarrow$

Bounded depth reachability

D1: $u \leqslant_{\sigma} v$ is weakly d-reachable from $v \Leftrightarrow$
There is a v-to- u path P of length $\leqslant d$ that is entirely $\geqslant_{\sigma} u$.
WReach $_{d}[G, \sigma, v]:=\left\{u \leqslant_{\sigma} v: u\right.$ is weakly d-reachable from $\left.v\right\}$.

D2: $u \leqslant{ }_{\sigma} v$ is strongly d-reachable from $v \Leftrightarrow$
There is a v-to- u path P of length $\leqslant d$ that is $\geqslant_{\sigma} v$, apart from u
$0000000000000000000000000000000 \longrightarrow$

Bounded depth reachability

D1: $u \leqslant_{\sigma} v$ is weakly d-reachable from $v \Leftrightarrow$
There is a v-to- u path P of length $\leqslant d$ that is entirely $\geqslant_{\sigma} u$.
WReach $_{d}[G, \sigma, v]:=\left\{u \leqslant_{\sigma} v: u\right.$ is weakly d-reachable from $\left.v\right\}$.

D2: $u \leqslant_{\sigma} v$ is strongly d-reachable from $v \Leftrightarrow$
There is a v-to- u path P of length $\leqslant d$ that is $\geqslant_{\sigma} v$, apart from u SReach $_{d}[G, \sigma, v]:=\left\{u \leqslant_{\sigma} v: u\right.$ is strongly d-reachable from $\left.v\right\}$.
$0000000000000000000000000000000 \longrightarrow$

Bounded depth reachability

D1: $u \leqslant_{\sigma} v$ is weakly d-reachable from $v \Leftrightarrow$
There is a v-to- u path P of length $\leqslant d$ that is entirely $\geqslant_{\sigma} u$. WReach $_{d}[G, \sigma, v]:=\left\{u \leqslant_{\sigma} v: u\right.$ is weakly d-reachable from $\left.v\right\}$.

D2: $u \leqslant_{\sigma} v$ is strongly d-reachable from $v \Leftrightarrow$
There is a v-to- u path P of length $\leqslant d$ that is $\geqslant_{\sigma} v$, apart from u SReach $_{d}[G, \sigma, v]:=\left\{u \leqslant_{\sigma} v: u\right.$ is strongly d-reachable from $\left.v\right\}$.
$0000000000000000000000000000000 \longrightarrow$
D3: $\operatorname{adm}_{d}(G, \sigma, v):=\max \#$ of disjoint v-to- $\left(<_{\sigma} v\right)$ paths of length $\leqslant d$

Generalized coloring numbers

Generalized coloring numbers

Definition

For a graph G and vertex ordering σ, we define:

$$
\begin{aligned}
& \operatorname{wcol}_{d}(G, \sigma):=\max _{v}\left|\operatorname{WReach}_{d}[G, \sigma, v]\right|, \\
& \operatorname{scol}_{d}(G, \sigma):=\max _{v}\left|\operatorname{SReach}_{d}[G, \sigma, v]\right|, \\
& \operatorname{adm}_{d}(G, \sigma):=\max _{v} \operatorname{adm}_{d}(G, \sigma, v),
\end{aligned}
$$

Generalized coloring numbers

Definition

For a graph G and vertex ordering σ, we define:

$$
\begin{array}{ll}
\operatorname{wcol}_{d}(G, \sigma):=\max _{v}\left|\operatorname{WReach}_{d}[G, \sigma, v]\right|, & \operatorname{wcol}_{d}(G):=\min _{\sigma} \operatorname{wcol}_{d}(G, \sigma), \\
\operatorname{scol}_{d}(G, \sigma):=\max _{v}\left|\operatorname{SReach}_{d}[G, \sigma, v]\right|, & \operatorname{scol}_{d}(G):=\min _{\sigma} \operatorname{scol}_{d}(G, \sigma), \\
\operatorname{adm}_{d}(G, \sigma):=\max _{v} \operatorname{adm}_{d}(G, \sigma, v), & \operatorname{adm}_{d}(G):=\min _{\sigma} \operatorname{adm}_{d}(G, \sigma) .
\end{array}
$$

Generalized coloring numbers

Definition

For a graph G and vertex ordering σ, we define:

$$
\begin{array}{ll}
\operatorname{wcol}_{d}(G, \sigma):=\max _{v}\left|\operatorname{WReach}_{d}[G, \sigma, v]\right|, & \operatorname{wcol}_{d}(G):=\min _{\sigma} \operatorname{wcol}_{d}(G, \sigma), \\
\operatorname{scol}_{d}(G, \sigma):=\max _{v}\left|\operatorname{SReach}_{d}[G, \sigma, v]\right|, & \operatorname{scol}_{d}(G):=\min _{\sigma} \operatorname{scol}_{d}(G, \sigma), \\
\operatorname{adm}_{d}(G, \sigma):=\max _{v} \operatorname{adm}_{d}(G, \sigma, v), & \operatorname{adm}_{d}(G):=\min _{\sigma} \operatorname{adm}_{d}(G, \sigma) .
\end{array}
$$

1. $\operatorname{dgn}(G)=\operatorname{adm}_{0}(G)=\operatorname{scol}_{0}(G)-1=\operatorname{wcol}_{0}(G)-1$.

Generalized coloring numbers

Definition

For a graph G and vertex ordering σ, we define:

$$
\begin{array}{ll}
\operatorname{wcol}_{d}(G, \sigma):=\max _{v}\left|\operatorname{WReach}_{d}[G, \sigma, v]\right|, & \operatorname{wcol}_{d}(G):=\min _{\sigma} \operatorname{wcol}_{d}(G, \sigma), \\
\operatorname{scol}_{d}(G, \sigma):=\max _{v}\left|\operatorname{SReach}_{d}[G, \sigma, v]\right|, & \operatorname{scol}_{d}(G):=\min _{\sigma} \operatorname{scol}_{d}(G, \sigma), \\
\operatorname{adm}_{d}(G, \sigma):=\max _{v} \operatorname{adm}_{d}(G, \sigma, v), & \operatorname{adm}_{d}(G):=\min _{\sigma} \operatorname{adm}_{d}(G, \sigma) .
\end{array}
$$

1. $\operatorname{dgn}(G)=\operatorname{adm}_{0}(G)=\operatorname{scol}_{0}(G)-1=\operatorname{wcol}_{0}(G)-1$.
2. $\operatorname{adm}_{d}(G) \leqslant \operatorname{scol}_{d}(G) \leqslant \operatorname{wcol}_{d}(G)$.

Generalized coloring numbers

Definition

For a graph G and vertex ordering σ, we define:

$$
\begin{array}{ll}
\operatorname{wcol}_{d}(G, \sigma):=\max _{v}\left|\operatorname{WReach}_{d}[G, \sigma, v]\right|, & \operatorname{wcol}_{d}(G):=\min _{\sigma} \operatorname{wcol}_{d}(G, \sigma), \\
\operatorname{scol}_{d}(G, \sigma):=\max _{v}\left|\operatorname{SReach}_{d}[G, \sigma, v]\right|, & \operatorname{scol}_{d}(G):=\min _{\sigma} \operatorname{scol}_{d}(G, \sigma), \\
\operatorname{adm}_{d}(G, \sigma):=\max _{v} \operatorname{adm}_{d}(G, \sigma, v), & \operatorname{adm}_{d}(G):=\min _{\sigma} \operatorname{adm}_{d}(G, \sigma) .
\end{array}
$$

1. $\operatorname{dgn}(G)=\operatorname{adm}_{0}(G)=\operatorname{scol}_{0}(G)-1=\operatorname{wcol}_{0}(G)-1$.
2. $\operatorname{adm}_{d}(G) \leqslant \operatorname{scol}_{d}(G) \leqslant \operatorname{wcol}_{d}(G)$.

Now: These parameters are functionally equivalent.

Equivalence of generalized coloring numbers

1. $\operatorname{scol}_{d}(G) \leqslant 1+\operatorname{adm}_{d}(G)^{d}$.

00000000000000000000000000000
$0000000000000000000000000000000 \rightarrow$
$000000000000000000000000000000000 \longrightarrow$
v
2. $\operatorname{wcol}_{d}(G) \leqslant 1+\operatorname{scol}_{d}(G)+\operatorname{scol}_{d}(G)^{2}+\ldots+\operatorname{scol}_{d}(G)^{d}$.

Equivalence with grads

Lemma

For a graph G and $d \in \mathbb{N}$, we have:

$$
\operatorname{adm}_{d}(G) \leqslant 6 d\left(\nabla_{d}(G)+1\right)^{3},
$$

$$
\nabla_{d}(G) \leqslant \operatorname{wcol}_{4 d+1}(G)
$$

Equivalence with grads

Lemma

For a graph G and $d \in \mathbb{N}$, we have:

$$
\operatorname{adm}_{d}(G) \leqslant 6 d\left(\nabla_{d}(G)+1\right)^{3},
$$

$$
\nabla_{d}(G) \leqslant \operatorname{wcol}_{4 d+1}(G)
$$

Proof of $\nabla_{d}(G) \leqslant \operatorname{wcol}_{4 d+1}(G)$:

Equivalence with grads

Lemma

For a graph G and $d \in \mathbb{N}$, we have:

$$
\operatorname{adm}_{d}(G) \leqslant 6 d\left(\nabla_{d}(G)+1\right)^{3}, \quad \quad \nabla_{d}(G) \leqslant \operatorname{wcol}_{4 d+1}(G)
$$

Proof of $\nabla_{d}(G) \leqslant \operatorname{wcol}_{4 d+1}(G)$:
$0000000000000000000000000000000 \longrightarrow$

- Let $H \preceq_{d} G$ and $\left\{J_{u}: u \in V(H)\right\}$ be a model.
- Let $\phi(u):=\min _{\sigma} V\left(J_{u}\right)$.
- Let $w \in V(H)$ be such that $\phi(w)$ is σ-maximal.
- Obs: For each $u \in N_{H}(w)$, we have $\phi(u) \in \operatorname{WReach}_{4 d+1}[G, \sigma, \phi(w)]$.
- Cor: w has degree $\leqslant \operatorname{wcol}_{4 d+1}(G)$ in H.
- Cor: Every $H \preceq_{d} G$ has a vertex of degree $\leqslant \operatorname{wcol}_{4 d+1}(G)$. \square

Equivalence with grads

Equivalence with grads

Sketch of proof of $\operatorname{adm}_{d}(G) \leqslant 6 d\left(\nabla_{d}(G)+1\right)^{3}$:

Equivalence with grads

Sketch of proof of $\operatorname{adm}_{d}(G) \leqslant 6 d\left(\nabla_{d}(G)+1\right)^{3}$:

- There is a greedy algorithm, similarly as for degeneracy.

Equivalence with grads

Sketch of proof of $\operatorname{adm}_{d}(G) \leqslant 6 d\left(\nabla_{d}(G)+1\right)^{3}$:

- There is a greedy algorithm, similarly as for degeneracy.
- If the algorithm gets stuck, it uncovers the following structure:

Equivalence with grads

Sketch of proof of $\operatorname{adm}_{d}(G) \leqslant 6 d\left(\nabla_{d}(G)+1\right)^{3}$:

- There is a greedy algorithm, similarly as for degeneracy.
- If the algorithm gets stuck, it uncovers the following structure:
- We can now find a dense depth- d minor. \square

Equivalence with grads

Sketch of proof of $\operatorname{adm}_{d}(G) \leqslant 6 d\left(\nabla_{d}(G)+1\right)^{3}$:

- There is a greedy algorithm, similarly as for degeneracy.
- If the algorithm gets stuck, it uncovers the following structure:
- We can now find a dense depth- d minor. \square

Theorem

For a class of graphs \mathcal{C}, the following are equivalent:
$-\mathcal{C}$ has bounded expansion;
$-\nabla_{d}(\mathcal{C})$ is finite for all $d \in \mathbb{N}$;
$-\operatorname{wcol}_{d}(\mathcal{C})$ is finite for all $d \in \mathbb{N}$;
$-\operatorname{scol}_{d}(\mathcal{C})$ is finite for all $d \in \mathbb{N}$;
$-\operatorname{adm}_{d}(\mathcal{C})$ is finite for all $d \in \mathbb{N}$.

Distance- d domination

Definition

Let G be a graph and $d \in \mathbb{N}$.
$D \subseteq V(G)$ is a dist- d dominating set if $\bigcup_{u \in D} \operatorname{Ball}_{d}(u)=V(G)$.

Distance- d domination

Definition

Let G be a graph and $d \in \mathbb{N}$.
$D \subseteq V(G)$ is a dist- d dominating set if $\bigcup_{u \in D} \operatorname{Ball}_{d}(u)=V(G)$.
$\operatorname{dom}_{d}(G):=$ min size of a dist- d dominating set in G

Distance- d domination

Definition

Let G be a graph and $d \in \mathbb{N}$.
$D \subseteq V(G)$ is a dist- d dominating set if $\bigcup_{u \in D} \operatorname{Ball}_{d}(u)=V(G)$. $\operatorname{dom}_{d}(G):=\mathrm{min}$ size of a dist- d dominating set in G

Let σ be a vertex ordering of G. Consider the algorithm:

Distance-d domination

Definition

Let G be a graph and $d \in \mathbb{N}$.
$D \subseteq V(G)$ is a dist- d dominating set if $\bigcup_{u \in D} \operatorname{Ball}_{d}(u)=V(G)$.
$\operatorname{dom}_{d}(G):=\mathrm{min}$ size of a dist- d dominating set in G
Let σ be a vertex ordering of G. Consider the algorithm:

- Every vertex v points to $\min _{\sigma} \mathrm{WReach}_{d}[G, \sigma, v]$.

Distance-d domination

Definition

Let G be a graph and $d \in \mathbb{N}$.
$D \subseteq V(G)$ is a dist- d dominating set if $\bigcup_{u \in D} \operatorname{Ball}_{d}(u)=V(G)$.
$\operatorname{dom}_{d}(G):=\mathrm{min}$ size of a dist- d dominating set in G
Let σ be a vertex ordering of G. Consider the algorithm:

- Every vertex v points to $\min _{\sigma} \mathrm{WReach}_{d}[G, \sigma, v]$.
- Let $D:=$ set of vertices that are pointed to.

Distance-d domination

Definition

Let G be a graph and $d \in \mathbb{N}$.
$D \subseteq V(G)$ is a dist- d dominating set if $\bigcup_{u \in D} \operatorname{Ball}_{d}(u)=V(G)$.
$\operatorname{dom}_{d}(G):=\mathrm{min}$ size of a dist- d dominating set in G
Let σ be a vertex ordering of G. Consider the algorithm:

- Every vertex v points to $\min _{\sigma} \mathrm{WReach}_{d}[G, \sigma, v]$.
- Let $D:=$ set of vertices that are pointed to.

1. Prove that $|D| \leqslant \operatorname{wcol}_{2 d}(G, \sigma) \cdot \operatorname{dom}_{d}(G)$.

Hitting and packing duality

Hitting and packing duality

Cor: Constant-factor apx algorithm for $\operatorname{dom}_{d}(G)$ in bnd expansion classes.

Hitting and packing duality

Cor: Constant-factor apx algorithm for $\operatorname{dom}_{d}(G)$ in bnd expansion classes.

- Compute σ with wcol $_{2 d}(G, \sigma)$ bounded by a constant.

Hitting and packing duality

Cor: Constant-factor apx algorithm for $\operatorname{dom}_{d}(G)$ in bnd expansion classes.

- Compute σ with wcol ${ }_{2 d}(G, \sigma)$ bounded by a constant.
- Each v picks $\min _{\sigma}$ WReach $_{d}[G, \sigma, v]$.

Hitting and packing duality

Cor: Constant-factor apx algorithm for $\operatorname{dom}_{d}(G)$ in bnd expansion classes.

- Compute σ with wcol ${ }_{2 d}(G, \sigma)$ bounded by a constant.
- Each v picks $\min _{\sigma}$ WReach $_{d}[G, \sigma, v]$.
- Output the picked vertices.

Hitting and packing duality

Cor: Constant-factor apx algorithm for $\operatorname{dom}_{d}(G)$ in bnd expansion classes.

- Compute σ with wcol ${ }_{2 d}(G, \sigma)$ bounded by a constant.
- Each v picks $\min _{\sigma}$ WReach $_{d}[G, \sigma, v]$.
- Output the picked vertices.

Obs: $\operatorname{dom}_{d}(G)$ is the hitting number for radius- d balls.

Hitting and packing duality

Cor: Constant-factor apx algorithm for $\operatorname{dom}_{d}(G)$ in bnd expansion classes.

- Compute σ with wcol ${ }_{2 d}(G, \sigma)$ bounded by a constant.
- Each v picks $\min _{\sigma}$ WReach $_{d}[G, \sigma, v]$.
- Output the picked vertices.

Obs: $\operatorname{dom}_{d}(G)$ is the hitting number for radius- d balls.
Def: Let $\operatorname{sca}_{d}(G)$ be the packing number for radius- d balls.

Hitting and packing duality

Cor: Constant-factor apx algorithm for $\operatorname{dom}_{d}(G)$ in bnd expansion classes.

- Compute σ with wcol ${ }_{2 d}(G, \sigma)$ bounded by a constant.
- Each v picks $\min _{\sigma}$ WReach $_{d}[G, \sigma, v]$.
- Output the picked vertices.

Obs: $\operatorname{dom}_{d}(G)$ is the hitting number for radius- d balls.
Def: Let $\operatorname{sca}_{d}(G)$ be the packing number for radius- d balls.
${\text { Obviously } \operatorname{sca}_{d}(G) \leqslant \operatorname{dom}_{d}(G) \text {, but the gap is unbounded in general. }}_{\text {. }}$

Hitting and packing duality

Cor: Constant-factor apx algorithm for $\operatorname{dom}_{d}(G)$ in bnd expansion classes.

- Compute σ with wcol ${ }_{2 d}(G, \sigma)$ bounded by a constant.
- Each v picks $\min _{\sigma}$ WReach $_{d}[G, \sigma, v]$.
- Output the picked vertices.

Obs: $\operatorname{dom}_{d}(G)$ is the hitting number for radius- d balls.
Def: Let $\operatorname{sca}_{d}(G)$ be the packing number for radius- d balls.
${\text { Obviously } \operatorname{sca}_{d}(G) \leqslant \operatorname{dom}_{d}(G) \text {, but the gap is unbounded in general. }}_{\text {D }}$

Theorem (Dvořák)

For every G and $d \in \mathbb{N}$, we have $\operatorname{dom}_{d}(G) \leqslant \operatorname{wcol}_{2 d}(G)^{2} \cdot \operatorname{sca}_{d}(G)$.

Hitting and packing duality

Cor: Constant-factor apx algorithm for $\operatorname{dom}_{d}(G)$ in bnd expansion classes.

- Compute σ with wcol ${ }_{2 d}(G, \sigma)$ bounded by a constant.
- Each v picks $\min _{\sigma}$ WReach $_{d}[G, \sigma, v]$.
- Output the picked vertices.

Obs: $\operatorname{dom}_{d}(G)$ is the hitting number for radius- d balls.
Def: Let $\operatorname{sca}_{d}(G)$ be the packing number for radius- d balls.
${\text { Obviously } \operatorname{sca}_{d}(G) \leqslant \operatorname{dom}_{d}(G) \text {, but the gap is unbounded in general. }}_{\text {D }}$

Theorem (Dvořák)

For every G and $d \in \mathbb{N}$, we have $\operatorname{dom}_{d}(G) \leqslant \operatorname{wcol}_{2 d}(G)^{2} \cdot \operatorname{sca}_{d}(G)$.
Cor: Constant-factor gap in bounded expansion classes.

Hitting and packing duality

Cor: Constant-factor apx algorithm for $\operatorname{dom}_{d}(G)$ in bnd expansion classes.

- Compute σ with wcol $_{2 d}(G, \sigma)$ bounded by a constant.
- Each v picks $\min _{\sigma}$ WReach $_{d}[G, \sigma, v]$.
- Output the picked vertices.

Obs: $\operatorname{dom}_{d}(G)$ is the hitting number for radius- d balls.
Def: Let $\operatorname{sca}_{d}(G)$ be the packing number for radius- d balls.
${\text { Obviously } \operatorname{sca}_{d}(G) \leqslant \operatorname{dom}_{d}(G) \text {, but the gap is unbounded in general. }}_{\text {D }}$

Theorem (Dvořák)

For every G and $d \in \mathbb{N}$, we have $\operatorname{dom}_{d}(G) \leqslant \operatorname{wcol}_{2 d}(G)^{2} \cdot \operatorname{sca}_{d}(G)$.
Cor: Constant-factor gap in bounded expansion classes.
Proof: A greedy procedure on a vertex ordering witnessing wcol ${ }_{2 d}(G)$.

Part 3:

Treedepth and low treedepth colorings

Treedepth

Treedepth

Definition

Elimination forest of G is a rooted forest F with $V(F)=V(G)$ s.t: u, v adjacent in $G \Rightarrow u, v$ in ancestor/descendant relation in F

Treedepth

Definition

Elimination forest of G is a rooted forest F with $V(F)=V(G)$ s.t: u, v adjacent in $G \Rightarrow u, v$ in ancestor/descendant relation in F $\operatorname{td}(G):=$ least possible depth of an elimination forest of G.

Treedepth

Definition

Elimination forest of G is a rooted forest F with $V(F)=V(G)$ s.t: u, v adjacent in $G \Rightarrow u, v$ in ancestor/descendant relation in F $\operatorname{td}(G):=$ least possible depth of an elimination forest of G.

Basic remarks:

Treedepth

Definition

Elimination forest of G is a rooted forest F with $V(F)=V(G)$ s.t: u, v adjacent in $G \Rightarrow u, v$ in ancestor/descendant relation in F $\operatorname{td}(G):=$ least possible depth of an elimination forest of G.

Basic remarks:

- If G is connected, then F must be a tree.

Treedepth

Definition

Elimination forest of G is a rooted forest F with $V(F)=V(G)$ s.t: u, v adjacent in $G \Rightarrow u, v$ in ancestor/descendant relation in F $\operatorname{td}(G):=$ least possible depth of an elimination forest of G.

Basic remarks:

- If G is connected, then F must be a tree.
$-H \subseteq G \Rightarrow \operatorname{td}(H) \leqslant \operatorname{td}(G)$

Treedepth

Definition

Elimination forest of G is a rooted forest F with $V(F)=V(G)$ s.t: u, v adjacent in $G \Rightarrow u, v$ in ancestor/descendant relation in F $\operatorname{td}(G):=$ least possible depth of an elimination forest of G.

Basic remarks:

- If G is connected, then F must be a tree.
$-H \subseteq G \Rightarrow \operatorname{td}(H) \leqslant \operatorname{td}(G)$
$-\operatorname{tw}(G) \leqslant \operatorname{td}(G) \leqslant \operatorname{tw}(G) \cdot \log n$

Treedepth

Definition

Elimination forest of G is a rooted forest F with $V(F)=V(G)$ s.t: u, v adjacent in $G \Rightarrow u, v$ in ancestor/descendant relation in F $\operatorname{td}(G):=$ least possible depth of an elimination forest of G.

Basic remarks:

- If G is connected, then F must be a tree.
$-H \subseteq G \Rightarrow \operatorname{td}(H) \leqslant \operatorname{td}(G)$
$-\operatorname{tw}(G) \leqslant \operatorname{td}(G) \leqslant \operatorname{tw}(G) \cdot \log n$
$-\operatorname{td}(G)=\operatorname{wcol}_{\infty}(G)$

Treedepth game

Treedepth game

Consider the following one-player game played on a graph G in rounds:

- Each round: Remove one vertex from each connected component.

Treedepth game

Consider the following one-player game played on a graph G in rounds:

- Each round: Remove one vertex from each connected component.

Fact. $\operatorname{td}(G)=\min \#$ rounds needed to eliminate the whole graph

Treedepth game

Consider the following one-player game played on a graph G in rounds:

- Each round: Remove one vertex from each connected component.

Fact. $\operatorname{td}(G)=\min \#$ rounds needed to eliminate the whole graph
(\geqslant) : Eliminate elimination forest level by level.

Treedepth game

Consider the following one-player game played on a graph G in rounds:

- Each round: Remove one vertex from each connected component.

Fact. $\operatorname{td}(G)=\min \#$ rounds needed to eliminate the whole graph
(\geqslant) : Eliminate elimination forest level by level.
(\leqslant) : Elimination strategy yields an elimination forest.

Treedepth game

Consider the following one-player game played on a graph G in rounds:

- Each round: Remove one vertex from each connected component.

Fact. $\operatorname{td}(G)=\min \#$ rounds needed to eliminate the whole graph
(\geqslant) : Eliminate elimination forest level by level.
(\leqslant) : Elimination strategy yields an elimination forest.

1. Compute:

$$
\operatorname{td}\left(K_{n}\right)=
$$

$\operatorname{td}\left(P_{n}\right)=$

Treedepth and bounded expansion

Intuition:

Treedepth and bounded expansion

Intuition:

- Low td coloring: Decomposition of a graph into very simple pieces.

Treedepth and bounded expansion

Intuition:

- Low td coloring: Decomposition of a graph into very simple pieces.
- very simple $\leadsto \rightarrow$ bnd treedepth

Treedepth and bounded expansion

Intuition:

- Low td coloring: Decomposition of a graph into very simple pieces.
- very simple $\longleftrightarrow \leadsto$ bnd treedepth
- Thm: If \mathcal{C} has bnd expansion, then each $G \in \mathcal{C}$ has such a decomposition.

Treedepth and bounded expansion

Intuition:

- Low td coloring: Decomposition of a graph into very simple pieces.
- very simple $\leadsto \rightarrow$ bnd treedepth
- Thm: If \mathcal{C} has bnd expansion, then each $G \in \mathcal{C}$ has such a decomposition.

Fix \mathcal{C} of bnd expansion, $G \in \mathcal{C}$, and a parameter $p \in \mathbb{N}$.

Treedepth and bounded expansion

Intuition:

- Low td coloring: Decomposition of a graph into very simple pieces.
- very simple $\leadsto \rightsquigarrow$ bnd treedepth
- Thm: If \mathcal{C} has bnd expansion, then each $G \in \mathcal{C}$ has such a decomposition.

Fix \mathcal{C} of bnd expansion, $G \in \mathcal{C}$, and a parameter $p \in \mathbb{N}$.
Let σ be a vertex ordering witnessing the value of $\operatorname{wcol}_{2^{p-1}}(G)$.

Treedepth and bounded expansion

Intuition:

- Low td coloring: Decomposition of a graph into very simple pieces.
- very simple $\leadsto \rightsquigarrow$ bnd treedepth
- Thm: If \mathcal{C} has bnd expansion, then each $G \in \mathcal{C}$ has such a decomposition.

Fix \mathcal{C} of bnd expansion, $G \in \mathcal{C}$, and a parameter $p \in \mathbb{N}$.
Let σ be a vertex ordering witnessing the value of $\operatorname{wcol}_{2^{p-1}}(G)$.
Let ϕ be the greedy coloring with $\operatorname{wcol}_{2^{p-1}}(G)$ colors s.t.:
For each $v, \phi(v) \notin$ colors given to WReach $_{2^{p-1}}(G) \backslash\{v\}$ by ϕ.

Constructing a low td coloring

1. P is a path on 2^{p-1} vertices $\Rightarrow \quad P$ receives $\geqslant p$ different colors.
2. $H \subseteq G$ is connected and receives $\leqslant p$ colors \Rightarrow H has a vertex of unique color.
3. $H \subseteq G$ receives $\leqslant p$ colors $\Rightarrow \operatorname{td}(H) \leqslant p$.

Low td colorings

Low td colorings

Theorem (low td colorings)

Let \mathcal{C} be a class of bnd expansion and $p \in \mathbb{N}$. Then there is $M(p) \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has a coloring with $\mathcal{M}(p)$ colors satisfying:

Every p colors together induce a subgraph of treedepth $\leqslant p$.

Low td colorings

Theorem (low td colorings)

Let \mathcal{C} be a class of bnd expansion and $p \in \mathbb{N}$. Then there is $M(p) \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has a coloring with $\mathcal{M}(p)$ colors satisfying:

Every p colors together induce a subgraph of treedepth $\leqslant p$.
Note: In our proof, $\mathcal{M}(p)=\operatorname{wcol}_{2^{p-1}}(\mathcal{C})$.

Low td colorings

Theorem (low td colorings)

Let \mathcal{C} be a class of bnd expansion and $p \in \mathbb{N}$. Then there is $M(p) \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has a coloring with $\mathcal{M}(p)$ colors satisfying:

Every p colors together induce a subgraph of treedepth $\leqslant p$.
Note: In our proof, $\mathcal{M}(p)=\operatorname{wcol}_{2^{p-1}}(\mathcal{C})$.
Theorem (low td coverings)
Let \mathcal{C} be a class of bnd expansion and $p \in \mathbb{N}$. Then there is $N(p) \in \mathbb{N}$ such that in every $G \in \mathcal{C}$ there are vertex subsets $A_{1}, \ldots, A_{N(p)}$ satisfying:
$-\operatorname{td}\left(G\left[A_{i}\right]\right) \leqslant p$ for each $i ;$ and

- for each $X \subseteq V(G)$ with $|X| \leqslant p$, there is A_{i} such that $X \subseteq A_{i}$.

Low td colorings

Theorem (low td colorings)

Let \mathcal{C} be a class of bnd expansion and $p \in \mathbb{N}$. Then there is $M(p) \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has a coloring with $\mathcal{M}(p)$ colors satisfying:

Every p colors together induce a subgraph of treedepth $\leqslant p$.
Note: In our proof, $\mathcal{M}(p)=\operatorname{wcol}_{2^{p-1}}(\mathcal{C})$.

Theorem (low td coverings)

Let \mathcal{C} be a class of bnd expansion and $p \in \mathbb{N}$. Then there is $N(p) \in \mathbb{N}$ such that in every $G \in \mathcal{C}$ there are vertex subsets $A_{1}, \ldots, A_{N(p)}$ satisfying:
$-\operatorname{td}\left(G\left[A_{i}\right]\right) \leqslant p$ for each $i ;$ and

- for each $X \subseteq V(G)$ with $|X| \leqslant p$, there is A_{i} such that $X \subseteq A_{i}$.

Proof:

Low td colorings

Theorem (low td colorings)

Let \mathcal{C} be a class of bnd expansion and $p \in \mathbb{N}$. Then there is $M(p) \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has a coloring with $\mathcal{M}(p)$ colors satisfying:

Every p colors together induce a subgraph of treedepth $\leqslant p$.
Note: In our proof, $M(p)=\operatorname{wcol}_{2^{p-1}}(\mathcal{C})$.

Theorem (low td coverings)

Let \mathcal{C} be a class of bnd expansion and $p \in \mathbb{N}$. Then there is $N(p) \in \mathbb{N}$ such that in every $G \in \mathcal{C}$ there are vertex subsets $A_{1}, \ldots, A_{N(p)}$ satisfying:
$-\operatorname{td}\left(G\left[A_{i}\right]\right) \leqslant p$ for each $i ;$ and

- for each $X \subseteq V(G)$ with $|X| \leqslant p$, there is A_{i} such that $X \subseteq A_{i}$.

Proof:

$-\left\{A_{1}, A_{2}, \ldots, A_{N(p)}\right\}=$ subsets of p colors.

Low td colorings

Theorem (low td colorings)

Let \mathcal{C} be a class of bnd expansion and $p \in \mathbb{N}$. Then there is $M(p) \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has a coloring with $\mathcal{M}(p)$ colors satisfying:

Every p colors together induce a subgraph of treedepth $\leqslant p$.
Note: In our proof, $M(p)=\operatorname{wcol}_{2^{p-1}}(\mathcal{C})$.

Theorem (low td coverings)

Let \mathcal{C} be a class of bnd expansion and $p \in \mathbb{N}$. Then there is $N(p) \in \mathbb{N}$ such that in every $G \in \mathcal{C}$ there are vertex subsets $A_{1}, \ldots, A_{N(p)}$ satisfying:
$-\operatorname{td}\left(G\left[A_{i}\right]\right) \leqslant p$ for each $i ; \quad$ and

- for each $X \subseteq V(G)$ with $|X| \leqslant p$, there is A_{i} such that $X \subseteq A_{i}$.

Proof:

$-\left\{A_{1}, A_{2}, \ldots, A_{N(p)}\right\}=$ subsets of p colors.
$-N(p)=\binom{M(p)}{p}$

Algorithmic application

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.
Let $p:=|V(Q)|$.
(Imagine $p=50$)

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.
Let $p:=|V(Q)|$.
(Imagine $p=50$)
Trivial: running time $\mathcal{O}\left(|V(G)|^{p}\right)$.

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.
Let $p:=|V(Q)|$.
(Imagine $p=50$)
Trivial: running time $\mathcal{O}\left(|V(G)|^{p}\right)$.

- In general, running time $|V(G)|^{o(p)}$ is unlikely.

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.
Let $p:=|V(Q)|$. (Imagine $p=50$)
Trivial: running time $\mathcal{O}\left(|V(G)|^{p}\right)$.

- In general, running time $|V(G)|^{o(p)}$ is unlikely.

Supposing $G \in \mathcal{C}$ where \mathcal{C} has bnd expansion, we can do as follows:

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.
Let $p:=|V(Q)|$.
(Imagine $p=50$)
Trivial: running time $\mathcal{O}\left(|V(G)|^{p}\right)$.

- In general, running time $|V(G)|^{o(p)}$ is unlikely.

Supposing $G \in \mathcal{C}$ where \mathcal{C} has bnd expansion, we can do as follows:

- Compute a treedepth- p cover $A_{1}, \ldots, A_{N(p)}$ of G.

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.
Let $p:=|V(Q)|$.
(Imagine $p=50$)
Trivial: running time $\mathcal{O}\left(|V(G)|^{p}\right)$.

- In general, running time $|V(G)|^{o(p)}$ is unlikely.

Supposing $G \in \mathcal{C}$ where \mathcal{C} has bnd expansion, we can do as follows:

- Compute a treedepth- p cover $A_{1}, \ldots, A_{N(p)}$ of G.
- For each i, test if $Q \subseteq G\left[A_{i}\right]$ by dynamic programming in linear time.

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.
Let $p:=|V(Q)|$.
(Imagine $p=50$)
Trivial: running time $\mathcal{O}\left(|V(G)|^{p}\right)$.

- In general, running time $|V(G)|^{o(p)}$ is unlikely.

Supposing $G \in \mathcal{C}$ where \mathcal{C} has bnd expansion, we can do as follows:

- Compute a treedepth- p cover $A_{1}, \ldots, A_{N(p)}$ of G.
- For each i, test if $Q \subseteq G\left[A_{i}\right]$ by dynamic programming in linear time.
- Obs: $\quad Q \subseteq G \Leftrightarrow Q \subseteq G\left[A_{i}\right]$ for some i.

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.
Let $p:=|V(Q)|$.
(Imagine $p=50$)
Trivial: running time $\mathcal{O}\left(|V(G)|^{p}\right)$.

- In general, running time $|V(G)|^{o(p)}$ is unlikely.

Supposing $G \in \mathcal{C}$ where \mathcal{C} has bnd expansion, we can do as follows:

- Compute a treedepth- p cover $A_{1}, \ldots, A_{N(p)}$ of G.
- For each i, test if $Q \subseteq G\left[A_{i}\right]$ by dynamic programming in linear time.
- Obs: $Q \subseteq G \Leftrightarrow Q \subseteq G\left[A_{i}\right]$ for some i.

Cor: A linear-time algorithm testing whether $Q \subseteq G$.

Combinatorial application

Combinatorial application

Theorem

Let \mathcal{C} be a class of bnd expansion and $d \in \mathbb{N}$ be odd. Then there is
$L(d) \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has a coloring ϕ with $L(d)$ colors satisfying:

$$
\operatorname{dist}(u, v)=d \quad \Rightarrow \quad \phi(u) \neq \phi(v) .
$$

Combinatorial application

Theorem

Let \mathcal{C} be a class of bnd expansion and $d \in \mathbb{N}$ be odd. Then there is
$L(d) \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has a coloring ϕ with $L(d)$ colors satisfying:

$$
\operatorname{dist}(u, v)=d \quad \Rightarrow \quad \phi(u) \neq \phi(v) .
$$

Lemma

If $\operatorname{td}(G)=p$, then G has a coloring with $2^{p}-1$ colors such that

$$
\operatorname{dist}(u, v) \text { is odd } \quad \Rightarrow \quad \phi(u) \neq \phi(v)
$$

Combinatorial application

Theorem

Let \mathcal{C} be a class of bnd expansion and $d \in \mathbb{N}$ be odd. Then there is
$L(d) \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has a coloring ϕ with $L(d)$ colors satisfying:

$$
\operatorname{dist}(u, v)=d \quad \Rightarrow \quad \phi(u) \neq \phi(v) .
$$

Lemma

If $\operatorname{td}(G)=p$, then G has a coloring with $2^{p}-1$ colors such that

$$
\operatorname{dist}(u, v) \text { is odd } \quad \Rightarrow \quad \phi(u) \neq \phi(v) \text {. }
$$

Lemma \Rightarrow Theorem:

Combinatorial application

Theorem

Let \mathcal{C} be a class of bnd expansion and $d \in \mathbb{N}$ be odd. Then there is
$L(d) \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has a coloring ϕ with $L(d)$ colors satisfying:

$$
\operatorname{dist}(u, v)=d \quad \Rightarrow \quad \phi(u) \neq \phi(v) .
$$

Lemma

If $\operatorname{td}(G)=p$, then G has a coloring with $2^{p}-1$ colors such that

$$
\operatorname{dist}(u, v) \text { is odd } \quad \Rightarrow \quad \phi(u) \neq \phi(v) \text {. }
$$

Lemma \Rightarrow Theorem:

- Let $\left\{A_{1}, \ldots, A_{N(d+1)}\right\}$ be a treedepth- $(d+1)$ covering of G.

Combinatorial application

Theorem

Let \mathcal{C} be a class of bnd expansion and $d \in \mathbb{N}$ be odd. Then there is
$L(d) \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has a coloring ϕ with $L(d)$ colors satisfying:

$$
\operatorname{dist}(u, v)=d \quad \Rightarrow \quad \phi(u) \neq \phi(v) .
$$

Lemma

If $\operatorname{td}(G)=p$, then G has a coloring with $2^{p}-1$ colors such that

$$
\operatorname{dist}(u, v) \text { is odd } \quad \Rightarrow \quad \phi(u) \neq \phi(v) .
$$

Lemma \Rightarrow Theorem:

- Let $\left\{A_{1}, \ldots, A_{N(d+1)}\right\}$ be a treedepth- $(d+1)$ covering of G.
- Color each $G\left[A_{i}\right]$ using Lemma with $2^{d+1}-1$ colors.

Combinatorial application

Theorem

Let \mathcal{C} be a class of bnd expansion and $d \in \mathbb{N}$ be odd. Then there is
$L(d) \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has a coloring ϕ with $L(d)$ colors satisfying:

$$
\operatorname{dist}(u, v)=d \quad \Rightarrow \quad \phi(u) \neq \phi(v) .
$$

Lemma

If $\operatorname{td}(G)=p$, then G has a coloring with $2^{p}-1$ colors such that

$$
\operatorname{dist}(u, v) \text { is odd } \quad \Rightarrow \quad \phi(u) \neq \phi(v) .
$$

Lemma \Rightarrow Theorem:

- Let $\left\{A_{1}, \ldots, A_{N(d+1)}\right\}$ be a treedepth- $(d+1)$ covering of G.
- Color each $G\left[A_{i}\right]$ using Lemma with $2^{d+1}-1$ colors.
- Construct the product coloring.

Combinatorial application

Theorem

Let \mathcal{C} be a class of bnd expansion and $d \in \mathbb{N}$ be odd. Then there is
$L(d) \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has a coloring ϕ with $L(d)$ colors satisfying:

$$
\operatorname{dist}(u, v)=d \quad \Rightarrow \quad \phi(u) \neq \phi(v) .
$$

Lemma

If $\operatorname{td}(G)=p$, then G has a coloring with $2^{p}-1$ colors such that

$$
\operatorname{dist}(u, v) \text { is odd } \quad \Rightarrow \quad \phi(u) \neq \phi(v)
$$

Lemma \Rightarrow Theorem:

- Let $\left\{A_{1}, \ldots, A_{N(d+1)}\right\}$ be a treedepth- $(d+1)$ covering of G.
- Color each $G\left[A_{i}\right]$ using Lemma with $2^{d+1}-1$ colors.
- Construct the product coloring.
$-L(d)=\left(2^{d+1}\right)^{N(d+1)}$.

Combinatorial application

Theorem

Let \mathcal{C} be a class of bnd expansion and $d \in \mathbb{N}$ be odd. Then there is
$L(d) \in \mathbb{N}$ such that every $G \in \mathcal{C}$ has a coloring ϕ with $L(d)$ colors satisfying:

$$
\operatorname{dist}(u, v)=d \quad \Rightarrow \quad \phi(u) \neq \phi(v) .
$$

Lemma

If $\operatorname{td}(G)=p$, then G has a coloring with $2^{p}-1$ colors such that

$$
\operatorname{dist}(u, v) \text { is odd } \quad \Rightarrow \quad \phi(u) \neq \phi(v) .
$$

Lemma \Rightarrow Theorem:

- Let $\left\{A_{1}, \ldots, A_{N(d+1)}\right\}$ be a treedepth- $(d+1)$ covering of G.
- Color each $G\left[A_{i}\right]$ using Lemma with $2^{d+1}-1$ colors.
- Construct the product coloring.
$-L(d)=\left(2^{d+1}\right)^{N(d+1)}$.
- Obs: A u-to- v path of length d is entirely contained in some $G\left[A_{i}\right]$.

Structural measures: summary

Structural measures: summary

Generalized coloring numbers:

Structural measures: summary

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.

Structural measures: summary

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach ${ }_{d}[G, \sigma, v]$ guards short connections from v.

Structural measures: summary

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach ${ }_{d}[G, \sigma, v]$ guards short connections from v.
- Main trick: Consider the σ-smallest vertex.

Structural measures: summary

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach ${ }_{d}[G, \sigma, v]$ guards short connections from v.
- Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

Structural measures: summary

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach ${ }_{d}[G, \sigma, v]$ guards short connections from v.
- Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

- Global decomposition into simple pieces.

Structural measures: summary

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach ${ }_{d}[G, \sigma, v]$ guards short connections from v.
- Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

- Global decomposition into simple pieces.
- Provide a reduction scheme:

$$
\text { bnd treedepth } \quad \Rightarrow \quad \text { bnd expansion }
$$

Structural measures: summary

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach ${ }_{d}[G, \sigma, v]$ guards short connections from v.
- Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

- Global decomposition into simple pieces.
- Provide a reduction scheme:

$$
\text { bnd treedepth } \quad \Rightarrow \quad \text { bnd expansion }
$$

These are main tools for bounded expansion classes.

Structural measures: summary

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach ${ }_{d}[G, \sigma, v]$ guards short connections from v.
- Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

- Global decomposition into simple pieces.
- Provide a reduction scheme:

$$
\text { bnd treedepth } \quad \Rightarrow \quad \text { bnd expansion }
$$

These are main tools for bounded expansion classes.
In nowhere dense classes they also work, but:
bounded by a constant $\rightsquigarrow \quad$ bounded by $\mathcal{O}\left(n^{\varepsilon}\right)$ for any $\varepsilon>0$

Structural measures: summary

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach ${ }_{d}[G, \sigma, v]$ guards short connections from v.
- Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

- Global decomposition into simple pieces.
- Provide a reduction scheme:

$$
\text { bnd treedepth } \quad \Rightarrow \quad \text { bnd expansion }
$$

These are main tools for bounded expansion classes.
In nowhere dense classes they also work, but:
bounded by a constant $\rightsquigarrow \quad$ bounded by $\mathcal{O}\left(n^{\varepsilon}\right)$ for any $\varepsilon>0$
Many arguments become much more technical or completely fail.

Structural measures: summary

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach ${ }_{d}[G, \sigma, v]$ guards short connections from v.
- Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

- Global decomposition into simple pieces.
- Provide a reduction scheme:

$$
\text { bnd treedepth } \quad \Rightarrow \quad \text { bnd expansion }
$$

These are main tools for bounded expansion classes.
In nowhere dense classes they also work, but:
bounded by a constant $\rightsquigarrow \quad$ bounded by $\mathcal{O}\left(n^{\varepsilon}\right)$ for any $\varepsilon>0$
Many arguments become much more technical or completely fail.
Main tool for nowhere dense classes: uniform quasi-wideness.

Part 4:

Uniform quasi-wideness and ladders

Wideness in graphs

Int: In a huge sparse graph, there are many vertices that are pairwise far from each other.

Wideness in graphs

Int: In a huge sparse graph, there are many vertices that are pairwise far from each other.

Wrong: a star.

Wideness in graphs

Int: In a huge sparse graph, there are many vertices that are pairwise far from each other.

Wrong: a star.

Wideness in graphs

Wideness in graphs

Int: In a huge sparse graph, one can remove few vertices so that there are many vertices that are pairwise far from each other.

Wideness in graphs

Int: In a huge sparse graph, one can remove few vertices so that there are many vertices that are pairwise far from each other.

Definition (Uniform quasi-wideness)

A class \mathcal{C} is uqw if for every $d \in \mathbb{N}$ there exist $s_{d} \in \mathbb{N}$ and $N_{d}: \mathbb{N} \rightarrow \mathbb{N}$ s.t.

Wideness in graphs

Int: In a huge sparse graph, one can remove few vertices so that there are many vertices that are pairwise far from each other.

Definition (Uniform quasi-wideness)

A class \mathcal{C} is uqw if for every $d \in \mathbb{N}$ there exist $s_{d} \in \mathbb{N}$ and $N_{d}: \mathbb{N} \rightarrow \mathbb{N}$ s.t. for every $G \in \mathcal{C}, m \in \mathbb{N}$, and $A \subseteq V(G)$ satisfying $|A|>N_{d}(m)$,

Wideness in graphs

Int: In a huge sparse graph, one can remove few vertices so that there are many vertices that are pairwise far from each other.

Definition (Uniform quasi-wideness)

A class \mathcal{C} is uqw if for every $d \in \mathbb{N}$ there exist $s_{d} \in \mathbb{N}$ and $N_{d}: \mathbb{N} \rightarrow \mathbb{N}$ s.t. for every $G \in \mathcal{C}, m \in \mathbb{N}$, and $A \subseteq V(G)$ satisfying $|A|>N_{d}(m)$, there exists $S \subseteq V(G)$ and $B \subseteq A-S$ such that

Wideness in graphs

Int: In a huge sparse graph, one can remove few vertices so that there are many vertices that are pairwise far from each other.

Definition (Uniform quasi-wideness)

A class \mathcal{C} is uqw if for every $d \in \mathbb{N}$ there exist $s_{d} \in \mathbb{N}$ and $N_{d}: \mathbb{N} \rightarrow \mathbb{N}$ s.t. for every $G \in \mathcal{C}, m \in \mathbb{N}$, and $A \subseteq V(G)$ satisfying $|A|>N_{d}(m)$, there exists $S \subseteq V(G)$ and $B \subseteq A-S$ such that
$-|S| \leqslant s_{d}$; and

Wideness in graphs

Int: In a huge sparse graph, one can remove few vertices so that there are many vertices that are pairwise far from each other.

Definition (Uniform quasi-wideness)

A class \mathcal{C} is uqw if for every $d \in \mathbb{N}$ there exist $s_{d} \in \mathbb{N}$ and $N_{d}: \mathbb{N} \rightarrow \mathbb{N}$ s.t. for every $G \in \mathcal{C}, m \in \mathbb{N}$, and $A \subseteq V(G)$ satisfying $|A|>N_{d}(m)$, there exists $S \subseteq V(G)$ and $B \subseteq A-S$ such that
$-|S| \leqslant s_{d}$; and
$-|B|>m$ and $\operatorname{dist}_{G-S}(u, v)>d$ for all distinct $u, v \in B$.

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)
A class of graphs is nowhere dense iff it is uniformly quasi-wide.

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense iff it is uniformly quasi-wide.
Note: One can always have $N_{d}(m)=\operatorname{poly}(m)$.

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense iff it is uniformly quasi-wide.
Note: One can always have $N_{d}(m)=\operatorname{poly}(m)$.
Uniform quasi-wideness is a Ramseyan tool for digging structure.

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense iff it is uniformly quasi-wide.
Note: One can always have $N_{d}(m)=\operatorname{poly}(m)$.
Uniform quasi-wideness is a Ramseyan tool for digging structure.

- Suppose in a graph G we have some huge complicated structure.

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense iff it is uniformly quasi-wide.
Note: One can always have $N_{d}(m)=\operatorname{poly}(m)$.
Uniform quasi-wideness is a Ramseyan tool for digging structure.

- Suppose in a graph G we have some huge complicated structure.
- Hit it with uqw to get a large well-behaved structure.

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense iff it is uniformly quasi-wide.
Note: One can always have $N_{d}(m)=\operatorname{poly}(m)$.
Uniform quasi-wideness is a Ramseyan tool for digging structure.

- Suppose in a graph G we have some huge complicated structure.
- Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense iff it is uniformly quasi-wide.
Note: One can always have $N_{d}(m)=\operatorname{poly}(m)$.
Uniform quasi-wideness is a Ramseyan tool for digging structure.

- Suppose in a graph G we have some huge complicated structure.
- Hit it with uqw to get a large well-behaved structure.

Now: Application to distance- d domination.

- Let \mathcal{C} be nowhere dense and $d \in \mathbb{N}$ be fixed.

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense iff it is uniformly quasi-wide.
Note: One can always have $N_{d}(m)=\operatorname{poly}(m)$.
Uniform quasi-wideness is a Ramseyan tool for digging structure.

- Suppose in a graph G we have some huge complicated structure.
- Hit it with uqw to get a large well-behaved structure.

Now: Application to distance- d domination.

- Let \mathcal{C} be nowhere dense and $d \in \mathbb{N}$ be fixed.
- Given $G \in \mathcal{C}$ and $k \in \mathbb{N}$, decide whether $\operatorname{dom}_{d}(G) \leqslant k$.

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense iff it is uniformly quasi-wide.
Note: One can always have $N_{d}(m)=\operatorname{poly}(m)$.
Uniform quasi-wideness is a Ramseyan tool for digging structure.

- Suppose in a graph G we have some huge complicated structure.
- Hit it with uqw to get a large well-behaved structure.

Now: Application to distance- d domination.

- Let \mathcal{C} be nowhere dense and $d \in \mathbb{N}$ be fixed.
- Given $G \in \mathcal{C}$ and $k \in \mathbb{N}$, decide whether $\operatorname{dom}_{d}(G) \leqslant k$.
- Trivial: $\mathcal{O}\left(|V(G)|^{k}\right)$. We want something faster.

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense iff it is uniformly quasi-wide.
Note: One can always have $N_{d}(m)=\operatorname{poly}(m)$.
Uniform quasi-wideness is a Ramseyan tool for digging structure.

- Suppose in a graph G we have some huge complicated structure.
- Hit it with uqw to get a large well-behaved structure.

Now: Application to distance- d domination.

- Let \mathcal{C} be nowhere dense and $d \in \mathbb{N}$ be fixed.
- Given $G \in \mathcal{C}$ and $k \in \mathbb{N}$, decide whether $\operatorname{dom}_{d}(G) \leqslant k$.
- Trivial: $\mathcal{O}\left(|V(G)|^{k}\right)$. We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Algorithm

Algorithm

$D_{1} 00000$

Round 1: Take any k-tuple of vertices D_{1}.

Algorithm

$D_{1} 00000$

Round 1: Take any k-tuple of vertices D_{1}.
If D_{1} is a dist- d domset, terminate.

Algorithm

$D_{1} \bigcirc 0000$ ○ b_{1}

Round 1: Take any k-tuple of vertices D_{1}.
If D_{1} is a dist- d domset, terminate.
Otherwise there is an undominated vertex b_{1}.

Algorithm

Round 2: Find any k-tuple of vertices D_{2} that dist- d dominates b_{1}.

Algorithm

Round 2: Find any k-tuple of vertices D_{2} that dist- d dominates b_{1}. If D_{2} is a dist- d domset, terminate.

Algorithm

Round 2: Find any k-tuple of vertices D_{2} that dist- d dominates b_{1}. If D_{2} is a dist- d domset, terminate.

Otherwise there is an undominated vertex b_{2}.

Algorithm

Round 3: Find any k-tuple of vertices D_{3} that dist- d dominates $\left\{b_{1}, b_{2}\right\}$.

Algorithm

Round i : Find any k-tuple of vertices D_{i} that dominates $\left\{b_{1}, \ldots, b_{i-1}\right\}$.

Algorithm

Round i : Find any k-tuple of vertices D_{i} that dominates $\left\{b_{1}, \ldots, b_{i-1}\right\}$. If there is none, answer NO.

Algorithm

Round i : Find any k-tuple of vertices D_{i} that dominates $\left\{b_{1}, \ldots, b_{i-1}\right\}$.
If there is none, answer NO.
If D_{i} is a dist- d domset, answer YES.

Algorithm

Round i : Find any k-tuple of vertices D_{i} that dominates $\left\{b_{1}, \ldots, b_{i-1}\right\}$.
If there is none, answer NO.
If D_{i} is a dist- d domset, answer YES.
Otherwise there is an undominated vertex b_{i}. Proceed

Analysis

Analysis

The ith iteration can be performed in time $f(k, i) \cdot\|G\|$.

Analysis

The ith iteration can be performed in time $f(k, i) \cdot\|G\|$. Why the number of iterations should be bounded?

Analysis

The ith iteration can be performed in time $f(k, i) \cdot\|G\|$.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates after at most $c \cdot k^{c}$ rounds, where c is a constant that depends only on \mathcal{C} and d.

Analysis

The ith iteration can be performed in time $f(k, i) \cdot\|G\|$.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates after at most $c \cdot k^{c}$ rounds, where c is a constant that depends only on \mathcal{C} and d.

Cor: A linear-time fixed-parameter algorithm.

Analysis

The ith iteration can be performed in time $f(k, i) \cdot\|G\|$.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates after at most $c \cdot k^{c}$ rounds, where c is a constant that depends only on \mathcal{C} and d.

Cor: A linear-time fixed-parameter algorithm.

- Running time $f(k) \cdot\|G\|$, where f depends on \mathcal{C} and d.

Analysis

The ith iteration can be performed in time $f(k, i) \cdot\|G\|$.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates after at most $c \cdot k^{c}$ rounds, where c is a constant that depends only on \mathcal{C} and d.

Cor: A linear-time fixed-parameter algorithm.

- Running time $f(k) \cdot\|G\|$, where f depends on \mathcal{C} and d.

Intuition:

Analysis

The ith iteration can be performed in time $f(k, i) \cdot\|G\|$.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates after at most $c \cdot k^{c}$ rounds, where c is a constant that depends only on \mathcal{C} and d.

Cor: A linear-time fixed-parameter algorithm.

- Running time $f(k) \cdot\|G\|$, where f depends on \mathcal{C} and d.

Intuition:

- The algorithms gradually gathers difficult witnesses.

Analysis

The ith iteration can be performed in time $f(k, i) \cdot\|G\|$.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates after at most $c \cdot k^{c}$ rounds, where c is a constant that depends only on \mathcal{C} and d.

Cor: A linear-time fixed-parameter algorithm.

- Running time $f(k) \cdot\|G\|$, where f depends on \mathcal{C} and d.

Intuition:

- The algorithms gradually gathers difficult witnesses.
- Eventually, domination of the witnesses forces domination of G.

Analysis

The i th iteration can be performed in time $f(k, i) \cdot\|G\|$.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates after at most $c \cdot k^{c}$ rounds, where c is a constant that depends only on \mathcal{C} and d.

Cor: A linear-time fixed-parameter algorithm.

- Running time $f(k) \cdot\|G\|$, where f depends on \mathcal{C} and d.

Intuition:

- The algorithms gradually gathers difficult witnesses.
- Eventually, domination of the witnesses forces domination of G.

Now: Proof of the Lemma for $k=1$.

Semi-ladders

After ℓ rounds, the Algorithm has constructed a semi-ladder of order ℓ.

Semi-ladders

After ℓ rounds, the Algorithm has constructed a semi-ladder of order ℓ.

- Two sequences of vertices: a_{1}, \ldots, a_{ℓ} and b_{1}, \ldots, b_{ℓ}.

Semi-ladders

After ℓ rounds, the Algorithm has constructed a semi-ladder of order ℓ.

- Two sequences of vertices: a_{1}, \ldots, a_{ℓ} and b_{1}, \ldots, b_{ℓ}.
- For each i, we have $\operatorname{dist}\left(a_{i}, b_{i}\right)>d$.

Semi-ladders

After ℓ rounds, the Algorithm has constructed a semi-ladder of order ℓ.

- Two sequences of vertices: a_{1}, \ldots, a_{ℓ} and b_{1}, \ldots, b_{ℓ}.
- For each i, we have $\operatorname{dist}\left(a_{i}, b_{i}\right)>d$.
- For each $j<i$, we have $\operatorname{dist}\left(a_{i}, b_{j}\right) \leqslant d$.

Semi-ladders

After ℓ rounds, the Algorithm has constructed a semi-ladder of order ℓ.

- Two sequences of vertices: a_{1}, \ldots, a_{ℓ} and b_{1}, \ldots, b_{ℓ}.
- For each i, we have $\operatorname{dist}\left(a_{i}, b_{i}\right)>d$.
- For each $j<i$, we have $\operatorname{dist}\left(a_{i}, b_{j}\right) \leqslant d$.

Suppose $\ell>N\left(2(d+1)^{s}\right)$, where $N(\cdot)=N_{2 d}(\cdot)$ and $s:=s_{2 d}$.

Semi-ladders

From uqw we get:

Semi-ladders

From uqw we get:

- set S satisfying $|S| \leqslant s$; and

Semi-ladders

From uqw we get:

- set S satisfying $|S| \leqslant s$; and
$-B \subseteq\left\{b_{1}, \ldots, b_{\ell}\right\}$ s.t. $|B|>2(d+1)^{s}$ and $\operatorname{dist}_{G-S}\left(b_{i}, b_{j}\right)>2 d$ for $b_{i}, b_{j} \in B$.
${ }^{a_{1}}$ $\bigcirc{ }_{b_{1}}^{\bigcirc}$
${ }^{a_{2}}$
${ }^{a b}$

${ }_{0}^{a_{0}}$

${ }^{a_{7}}$

a_{10}

Semi-ladders

From uqw we get:

- set S satisfying $|S| \leqslant s$; and
$-B \subseteq\left\{b_{1}, \ldots, b_{\ell}\right\}$ s.t. $|B|>2(d+1)^{s}$ and $\operatorname{dist}_{G-S}\left(b_{i}, b_{j}\right)>2 d$ for $b_{i}, b_{j} \in B$.
For $b_{i} \in B$, let $\pi_{i}: S \rightarrow\{1, \ldots, d, \infty\}$ be its distance- d profile on S :

$$
\pi_{i}(v)= \begin{cases}\operatorname{dist}\left(b_{i}, v\right) & \text { if } \leqslant d \\ \infty & \text { otherwise }\end{cases}
$$

Semi-ladders

From uqw we get:

- set S satisfying $|S| \leqslant s$; and
$-B \subseteq\left\{b_{1}, \ldots, b_{\ell}\right\}$ s.t. $|B|>2(d+1)^{s}$ and $\operatorname{dist}_{G-S}\left(b_{i}, b_{j}\right)>2 d$ for $b_{i}, b_{j} \in B$.
For $b_{i} \in B$, let $\pi_{i}: S \rightarrow\{1, \ldots, d, \infty\}$ be its distance- d profile on S :

$$
\pi_{i}(v)= \begin{cases}\operatorname{dist}\left(b_{i}, v\right) & \text { if } \leqslant d \\ \infty & \text { otherwise }\end{cases}
$$

Only $(d+1)^{s}$ possible profiles $\Rightarrow \exists b_{x}, b_{y}, b_{z}$ with same profile.

Semi-ladders

There are a_{z}-to- b_{x} and a_{z}-to- b_{y} paths of length $\leqslant d$.

Semi-ladders

There are a_{z}-to- b_{x} and a_{z}-to- b_{y} paths of length $\leqslant d$.
One of them needs to intersect S, say the a_{z}-to- b_{y} path.

Semi-ladders

There are a_{z}-to- b_{x} and a_{z}-to- b_{y} paths of length $\leqslant d$.
One of them needs to intersect S, say the a_{z}-to- b_{y} path.

$$
\pi_{y}=\pi_{z} \quad \Rightarrow \quad \text { Same distances to the intersection point. }
$$

Semi-ladders

There are a_{z}-to- b_{x} and a_{z}-to- b_{y} paths of length $\leqslant d$. One of them needs to intersect S, say the a_{z}-to- b_{y} path.

$$
\pi_{y}=\pi_{z} \quad \Rightarrow \quad \text { Same distances to the intersection point. }
$$

We conclude that $\operatorname{dist}\left(a_{z}, b_{z}\right) \leqslant d$.
Contradiction.

Semi-ladders

There are a_{z}-to- b_{x} and a_{z}-to- b_{y} paths of length $\leqslant d$.
One of them needs to intersect S, say the a_{z}-to- b_{y} path.

$$
\pi_{y}=\pi_{z} \quad \Rightarrow \quad \text { Same distances to the intersection point. }
$$

We conclude that $\operatorname{dist}\left(a_{z}, b_{z}\right) \leqslant d$. Contradiction.

Cor: Maximum semi-ladder order is $\ell:=N_{2 d}\left(2(d+1)^{s_{2} d}\right)$.

Case $k>1$

Claim

For $k>1$, the number of rounds is $<k^{\ell+1}$, where ℓ is the bound for $k=1$.

Case $k>1$

Claim

For $k>1$, the number of rounds is $<k^{\ell+1}$, where ℓ is the bound for $k=1$.
Suppose the Algorithm performs $p=k^{\ell+1}$ rounds.

Case $k>1$

Claim

For $k>1$, the number of rounds is $<k^{\ell+1}$, where ℓ is the bound for $k=1$.
Suppose the Algorithm performs $p=k^{\ell+1}$ rounds.
$-D_{p}$ dist- d dominates $\left\{b_{1}, \ldots, b_{p-1}\right\}$.

Case $k>1$

Claim

For $k>1$, the number of rounds is $<k^{\ell+1}$, where ℓ is the bound for $k=1$.
Suppose the Algorithm performs $p=k^{\ell+1}$ rounds.

- D_{p} dist- d dominates $\left\{b_{1}, \ldots, b_{p-1}\right\}$.
- Hence: Some $a_{p} \in D_{p}$ dist- d dominates $\frac{1}{k}$ fraction of $\left\{b_{1}, \ldots, b_{p-1}\right\}$.

Case $k>1$

Claim

For $k>1$, the number of rounds is $<k^{\ell+1}$, where ℓ is the bound for $k=1$.
Suppose the Algorithm performs $p=k^{\ell+1}$ rounds.

- D_{p} dist- d dominates $\left\{b_{1}, \ldots, b_{p-1}\right\}$.
- Hence: Some $a_{p} \in D_{p}$ dist- d dominates $\frac{1}{k}$ fraction of $\left\{b_{1}, \ldots, b_{p-1}\right\}$.
- Restrict attention to those $\geqslant k^{\ell}$ vertices and continue.

Case $k>1$

Claim

For $k>1$, the number of rounds is $<k^{\ell+1}$, where ℓ is the bound for $k=1$.
Suppose the Algorithm performs $p=k^{\ell+1}$ rounds.

- D_{p} dist- d dominates $\left\{b_{1}, \ldots, b_{p-1}\right\}$.
- Hence: Some $a_{p} \in D_{p}$ dist- d dominates $\frac{1}{k}$ fraction of $\left\{b_{1}, \ldots, b_{p-1}\right\}$.
- Restrict attention to those $\geqslant k^{\ell}$ vertices and continue.

Case $k>1$

Claim

For $k>1$, the number of rounds is $<k^{\ell+1}$, where ℓ is the bound for $k=1$.
Suppose the Algorithm performs $p=k^{\ell+1}$ rounds.

- D_{p} dist- d dominates $\left\{b_{1}, \ldots, b_{p-1}\right\}$.
- Hence: Some $a_{p} \in D_{p}$ dist- d dominates $\frac{1}{k}$ fraction of $\left\{b_{1}, \ldots, b_{p-1}\right\}$.
- Restrict attention to those $\geqslant k^{\ell}$ vertices and continue.

Case $k>1$

Claim

For $k>1$, the number of rounds is $<k^{\ell+1}$, where ℓ is the bound for $k=1$.
Suppose the Algorithm performs $p=k^{\ell+1}$ rounds.

- D_{p} dist- d dominates $\left\{b_{1}, \ldots, b_{p-1}\right\}$.
- Hence: Some $a_{p} \in D_{p}$ dist- d dominates $\frac{1}{k}$ fraction of $\left\{b_{1}, \ldots, b_{p-1}\right\}$.
- Restrict attention to those $\geqslant k^{\ell}$ vertices and continue.
$\ell+1$ rounds \rightsquigarrow a semi-ladder of order $\ell+1$
Contradiction.

Ladders and stability

Ladders and stability

To define semi-ladders, we used predicate $\varphi(x, y)=" \operatorname{dist}(x, y) \leqslant d "$.

Ladders and stability

To define semi-ladders, we used predicate $\varphi(x, y)=" \operatorname{dist}(x, y) \leqslant d$ ". Idea: Replace distance checks with any first-order predicate.

Ladders and stability

To define semi-ladders, we used predicate $\varphi(x, y)=" \operatorname{dist}(x, y) \leqslant d "$.
Idea: Replace distance checks with any first-order predicate.

Definition

Let G be a graph and $\varphi(x, y)$ be an FO formula.
A φ-ladder in G is a pair of sequences a_{1}, \ldots, a_{ℓ} and b_{1}, \ldots, b_{ℓ} such that

$$
G \models \varphi\left(a_{i}, b_{j}\right) \quad \Leftrightarrow \quad i>j .
$$

Ladders and stability

To define semi-ladders, we used predicate $\varphi(x, y)=" \operatorname{dist}(x, y) \leqslant d$ ".
Idea: Replace distance checks with any first-order predicate.

Definition

Let G be a graph and $\varphi(x, y)$ be an FO formula.
A φ-ladder in G is a pair of sequences a_{1}, \ldots, a_{ℓ} and b_{1}, \ldots, b_{ℓ} such that

$$
G \models \varphi\left(a_{i}, b_{j}\right) \quad \Leftrightarrow \quad i>j .
$$

φ-ladder \longleftrightarrow linear order

Ladders and stability

To define semi-ladders, we used predicate $\varphi(x, y)=" \operatorname{dist}(x, y) \leqslant d "$.
Idea: Replace distance checks with any first-order predicate.

Definition

Let G be a graph and $\varphi(x, y)$ be an FO formula.
A φ-ladder in G is a pair of sequences a_{1}, \ldots, a_{ℓ} and b_{1}, \ldots, b_{ℓ} such that

$$
G \models \varphi\left(a_{i}, b_{j}\right) \quad \Leftrightarrow \quad i>j .
$$

φ-ladder \longleftrightarrow linear order

Definition

A class \mathcal{C} is stable if for every FO formula $\varphi(x, y)$, there is
a finite upper bound on the orders of φ-ladders in graphs from \mathcal{C}.

Beyond Sparsity

Theorem (Adler \& Adler; Podewski \& Ziegler)
Every nowhere dense class is stable.
Every subgraph-closed stable class is nowhere dense.

Beyond Sparsity

Theorem (Adler \& Adler; Podewski \& Ziegler)
Every nowhere dense class is stable.
Every subgraph-closed stable class is nowhere dense.

There are many more stable classes than nowhere dense:

Beyond Sparsity

Theorem (Adler \& Adler; Podewski \& Ziegler)
Every nowhere dense class is stable.
Every subgraph-closed stable class is nowhere dense.

There are many more stable classes than nowhere dense:

- For an FO formula $\varphi(x, y)$ and graph G, we define:

$$
G^{\varphi}:=(V(G),\{u v: G \models \varphi(u, v)\}) .
$$

Beyond Sparsity

Theorem (Adler \& Adler; Podewski \& Ziegler)
Every nowhere dense class is stable.
Every subgraph-closed stable class is nowhere dense.

There are many more stable classes than nowhere dense:

- For an FO formula $\varphi(x, y)$ and graph G, we define:

$$
G^{\varphi}:=(V(G),\{u v: G \models \varphi(u, v)\}) .
$$

- Ex: graph powers, complementation,...

Beyond Sparsity

Theorem (Adler \& Adler; Podewski \& Ziegler)
Every nowhere dense class is stable.
Every subgraph-closed stable class is nowhere dense.

There are many more stable classes than nowhere dense:

- For an FO formula $\varphi(x, y)$ and graph G, we define:

$$
G^{\varphi}:=(V(G),\{u v: G \models \varphi(u, v)\}) .
$$

- Ex: graph powers, complementation,...
- For a class \mathcal{C}, we define:

$$
\mathcal{C}^{\varphi}:=\left\{G^{\varphi}: G \in \mathcal{C}\right\} .
$$

Beyond Sparsity

Theorem (Adler \& Adler; Podewski \& Ziegler)

Every nowhere dense class is stable.
Every subgraph-closed stable class is nowhere dense.
There are many more stable classes than nowhere dense:

- For an FO formula $\varphi(x, y)$ and graph G, we define:

$$
G^{\varphi}:=(V(G),\{u v: G \models \varphi(u, v)\}) .
$$

- Ex: graph powers, complementation,...
- For a class \mathcal{C}, we define:

$$
\mathcal{C}^{\varphi}:=\left\{G^{\varphi}: G \in \mathcal{C}\right\} .
$$

- If \mathcal{C} is nowhere dense, then \mathcal{C}^{φ} is called structurally nowhere dense.

Beyond Sparsity

Theorem (Adler \& Adler; Podewski \& Ziegler)

Every nowhere dense class is stable.
Every subgraph-closed stable class is nowhere dense.
There are many more stable classes than nowhere dense:

- For an FO formula $\varphi(x, y)$ and graph G, we define:

$$
G^{\varphi}:=(V(G),\{u v: G \models \varphi(u, v)\}) .
$$

- Ex: graph powers, complementation,...
- For a class \mathcal{C}, we define:

$$
\mathcal{C}^{\varphi}:=\left\{G^{\varphi}: G \in \mathcal{C}\right\} .
$$

- If \mathcal{C} is nowhere dense, then \mathcal{C}^{φ} is called structurally nowhere dense.

Fact. Structurally nowhere dense \Rightarrow Stable

Beyond Sparsity

Theorem (Adler \& Adler; Podewski \& Ziegler)

Every nowhere dense class is stable.
Every subgraph-closed stable class is nowhere dense.
There are many more stable classes than nowhere dense:

- For an FO formula $\varphi(x, y)$ and graph G, we define:

$$
G^{\varphi}:=(V(G),\{u v: G \models \varphi(u, v)\}) .
$$

- Ex: graph powers, complementation,...
- For a class \mathcal{C}, we define:

$$
\mathcal{C}^{\varphi}:=\left\{G^{\varphi}: G \in \mathcal{C}\right\} .
$$

- If \mathcal{C} is nowhere dense, then \mathcal{C}^{φ} is called structurally nowhere dense.

Fact. Structurally nowhere dense \Rightarrow Stable
Goal: A theory of well-structured dense graphs.

Further reading

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez
© Springer
Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

乌Springer
Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

- Hopefully, one day they will be turned into a book.

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez
© Springer
Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

- Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez
© Springer
Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

- Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

Sparsity

© 9 Springer
Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

- Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

- PhD students of ALGOMANET:
https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

Sparsity

© Springer
Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

- Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

- PhD students of ALGOMANET:
https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html
- high school students at Math Beyond Limits 2019:
https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

Sparsity

凹sprizer
Lecture notes and tutorials at www. mimuw. edu.pl/~mp248287/sparsity2

- Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

- PhD students of ALGOMANET:
https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html
- high school students at Math Beyond Limits 2019:
https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Thank you for the attention!

[^0]: $00000000000000000000000000000000 \rightarrow$
 v

