tutorial at PCC'20

Michał Pilipczuk

Faculty of Mathematics, Informatics, and Mechanics University of Warsaw

September 17th, 2020

Organization

Organization

Rough plan:

9:15 - 10:00	Introduction
10:15 - 11:00	Generalized coloring numbers
11:15 – 12:00	Treedepth and low treedepth colorings
12:15 – 13:00	Uniform quasi-wideness and ladders

Organization

Rough plan:

9:15 - 10:00	Introduction
10:15 – 11:00	Generalized coloring numbers
11:15 – 12:00	Treedepth and low treedepth colorings
12:15 - 13:00	Uniform quasi-wideness and ladders

Format:

- Lecture interleaved with short exercises. ~~ Be active!
- Understanding checks by writing +1 in the chat.

Graphs in applications are often **sparse**.

Graphs in applications are often **sparse**.

- Transportation networks are (roughly) planar.

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean **sparse**?

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean **sparse**?

- Bounded degree?

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean **sparse**?

- Bounded degree?
- Planar-like? Tree-like?

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean **sparse**?

- Bounded degree?
- Planar-like? Tree-like?
- Fixed degree distribution?

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean **sparse**?

- Bounded degree?
- Planar-like? Tree-like?
- Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean **sparse**?

- Bounded degree?
- Planar-like? Tree-like?
- Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean **sparse**?

- Bounded degree?
- Planar-like? Tree-like?
- Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

- **1.** general and robust;
- 2. elegant and interesting;

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean **sparse**?

- Bounded degree?
- Planar-like? Tree-like?
- Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

- **1.** general and robust;
- 2. elegant and interesting;
- 3. useful in applications.

Graphs in applications are often sparse.

- Transportation networks are (roughly) planar.
- Facebook graph has average degree 338 and median degree 200.

What does it mean **sparse**?

- Bounded degree?
- Planar-like? Tree-like?
- Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

- 1. general and robust;
- 2. elegant and interesting;
- 3. useful in applications.

Sparsity: a young area of graph theory that \pm achieves all of the above.

Q: What does it mean that a graph is **sparse**?

Q: What does it mean that a graph is **sparse**?

Attempt 1. A graph *G* is **sparse** if it has a linear number of edges.

Q: What does it mean that a graph is **sparse**?

Attempt 1. A graph *G* is **sparse** if it has a linear number of edges.

- Formally, $|E(G)| \leq c \cdot |V(G)|$ for some constant *c*.

Q: What does it mean that a graph is **sparse**?

Attempt 1. A graph *G* is sparse if it has a linear number of edges. - Formally, $|E(G)| \leq c \cdot |V(G)|$ for some constant *c*.

$$\operatorname{avgdeg}(G) = \frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$$

Q: What does it mean that a graph is **sparse**?

Attempt 1. A graph *G* is sparse if it has a linear number of edges. - Formally, $|E(G)| \leq c \cdot |V(G)|$ for some constant *c*.

$$\operatorname{avgdeg}(G) = \frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$$

- Equivalently, average degree in G is bounded by 2c.

Q: What does it mean that a graph is **sparse**?

Attempt 1. A graph *G* is sparse if it has a linear number of edges. - Formally, $|E(G)| \leq c \cdot |V(G)|$ for some constant *c*.

$$\operatorname{avgdeg}(G) = \frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$$

- Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree $\leq d \Rightarrow$ Average degree $\leq d$.

Q: What does it mean that a graph is **sparse**?

Attempt 1. A graph *G* is sparse if it has a linear number of edges. - Formally, $|E(G)| \leq c \cdot |V(G)|$ for some constant *c*.

$$\operatorname{avgdeg}(G) = \frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$$

- Equivalently, average degree in G is bounded by 2c.

- **Ex 1.** Maximum degree $\leq d \Rightarrow$ Average degree $\leq d$.
- **Ex 2.** Planar graph has $\leq 3n 6$ edges \Rightarrow Average degree < 6.

Q: What does it mean that a graph is **sparse**?

Attempt 1. A graph *G* is sparse if it has a linear number of edges. - Formally, $|E(G)| \leq c \cdot |V(G)|$ for some constant *c*.

$$\operatorname{avgdeg}(G) = \frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$$

- Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree $\leq d \Rightarrow$ Average degree $\leq d$. **Ex 2.** Planar graph has $\leq 3n - 6$ edges \Rightarrow Average degree < 6.

Issue: A complete graph on k vertices plus k^2 isolated vertices.

Sparse graphs

Q: What does it mean that a graph is **sparse**?

Attempt 1. A graph *G* is sparse if it has a linear number of edges. - Formally, $|E(G)| \leq c \cdot |V(G)|$ for some constant *c*.

$$\operatorname{avgdeg}(G) = \frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$$

- Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree $\leq d \Rightarrow$ Average degree $\leq d$. **Ex 2.** Planar graph has $\leq 3n - 6$ edges \Rightarrow Average degree < 6.

Issue: A complete graph on k vertices plus k^2 isolated vertices.

- Average degree smaller than 1.

Q: What does it mean that a graph is **sparse**?

Attempt 1. A graph *G* is sparse if it has a linear number of edges. - Formally, $|E(G)| \leq c \cdot |V(G)|$ for some constant *c*.

$$\operatorname{avgdeg}(G) = \frac{\sum_{u \in V(G)} \operatorname{deg}(u)}{|V(G)|} = \frac{2|E(G)|}{|V(G)|}$$

- Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree $\leq d \Rightarrow$ Average degree $\leq d$. **Ex 2.** Planar graph has $\leq 3n - 6$ edges \Rightarrow Average degree < 6.

Issue: A complete graph on k vertices plus k^2 isolated vertices.

- Average degree smaller than 1.
- Contains a **dense** subgraph.

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

- We define **maximum average degree** of *G* as

 $\operatorname{mad}(G) \coloneqq \max_{H \subseteq G} \operatorname{avgdeg}(H).$

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

- We define **maximum average degree** of *G* as

 $\operatorname{mad}(G) \coloneqq \max_{H \subseteq G} \operatorname{avgdeg}(H).$

-G is **sparse** if mad(G) $\leq c$ for some constant c.

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

- We define **maximum average degree** of *G* as

 $\operatorname{mad}(G) \coloneqq \max_{H \subseteq G} \operatorname{avgdeg}(H).$

- G is **sparse** if mad(G) $\leq c$ for some constant c.

Ex 1. *G* has maximum degree $\leq d \Rightarrow mad(G) \leq d$.

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

– We define **maximum average degree** of *G* as

 $\operatorname{mad}(G) \coloneqq \max_{H \subseteq G} \operatorname{avgdeg}(H).$

-G is **sparse** if mad $(G) \leq c$ for some constant *c*.

Ex 1. *G* has maximum degree $\leq d \Rightarrow mad(G) \leq d$.

Ex 2. G is planar \Rightarrow mad(G) < 6.

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

- We define **maximum average degree** of *G* as

 $\operatorname{mad}(G) \coloneqq \max_{H \subseteq G} \operatorname{avgdeg}(H).$

- G is **sparse** if mad(G) $\leq c$ for some constant c.

Ex 1. *G* has maximum degree $\leq d \Rightarrow mad(G) \leq d$.

Ex 2. G is planar \Rightarrow mad(G) < 6.

Issue: A subdivided complete graph.

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

- We define **maximum average degree** of *G* as

 $\operatorname{mad}(G) \coloneqq \max_{H \subseteq G} \operatorname{avgdeg}(H).$

- G is **sparse** if mad(G) $\leq c$ for some constant c.

Ex 1. *G* has maximum degree $\leq d \Rightarrow mad(G) \leq d$.

Ex 2. G is planar $\Rightarrow mad(G) < 6$.

Issue: A subdivided complete graph.

- Every subgraph has avgdeg \leq 4.

Attempt 2. Every **subgraph** of *G* has a linear number of edges.

- We define **maximum average degree** of *G* as

 $\operatorname{mad}(G) \coloneqq \max_{H \subseteq G} \operatorname{avgdeg}(H).$

- G is **sparse** if mad(G) $\leq c$ for some constant c.

Ex 1. *G* has maximum degree $\leq d \Rightarrow mad(G) \leq d$.

Ex 2. G is planar $\Rightarrow mad(G) < 6$.

Issue: A subdivided complete graph.

- Every subgraph has avgdeg \leq 4.
- Is this graph really **sparse**?

Option 1. We decide that a subdivided complete graph is **sparse**.

Option 1. We decide that a subdivided complete graph is **sparse**.

- We can construct a theory around the parameter $mad(\cdot)$.

Option 1. We decide that a subdivided complete graph is **sparse**.

- We can construct a theory around the parameter $mad(\cdot)$.
- $\operatorname{mad}(\cdot)$ is essentially equivalent to **arboricity** and **degeneracy**.

Michał Pilipczuk

Sparse graphs

Option 1. We decide that a subdivided complete graph is **sparse**.

- We can construct a theory around the parameter $mad(\cdot)$.
- $\operatorname{mad}(\cdot)$ is essentially equivalent to **arboricity** and **degeneracy**.
- These connections are useful, but not really very deep.

Michał Pilipczuk

Sparse graphs

Option 1. We decide that a subdivided complete graph is **sparse**.

- We can construct a theory around the parameter $mad(\cdot)$.
- $\operatorname{mad}(\cdot)$ is essentially equivalent to **arboricity** and **degeneracy**.
- These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is **dense**.

Michał Pilipczuk

Sparse graphs

Option 1. We decide that a subdivided complete graph is **sparse**.

- We can construct a theory around the parameter $mad(\cdot)$.
- $\operatorname{mad}(\cdot)$ is essentially equivalent to **arboricity** and **degeneracy**.
- These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is **dense**.

- Reason: It contains a dense substructure visible at "depth" 1.

Option 1. We decide that a subdivided complete graph is **sparse**.

- We can construct a theory around the parameter $mad(\cdot)$.
- $\operatorname{mad}(\cdot)$ is essentially equivalent to **arboricity** and **degeneracy**.
- These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is **dense**.

- Reason: It contains a dense substructure visible at "depth" 1.
- **Need:** A notion of **embedding** that would capture this.

Definition

H is a **minor** of $G \Leftrightarrow$

H is obtained from a subgraph of *G* by contracting connected subgraphs

Definition

H is a **minor** of $G \Leftrightarrow$

H is obtained from a subgraph of *G* by contracting connected subgraphs

Theorem (Kuratowski; Wagner)

Planar graphs are exactly $\{K_5, K_{3,3}\}$ -minor-free graphs.

Definition

H is a **minor** of $G \Leftrightarrow$

H is obtained from a subgraph of *G* by contracting connected subgraphs

Theorem (Kuratowski; Wagner)

Planar graphs are exactly $\{K_5, K_{3,3}\}$ -minor-free graphs.

Theorem (Robertson and Seymour)

For every $t \in \mathbb{N}$, every K_t -minor-free graph looks like this:

Attempt 3. Graphs excluding K_t as a minor, for some $t \in \mathbb{N}$.

Attempt 3. Graphs excluding K_t as a minor, for some $t \in \mathbb{N}$. **Issue:** Graphs with maxdeg 3 admit all complete graphs as minors.

Attempt 3. Graphs excluding K_t as a minor, for some $t \in \mathbb{N}$. **Issue:** Graphs with maxdeg 3 admit all complete graphs as minors.

Attempt 3. Graphs excluding K_t as a minor, for some $t \in \mathbb{N}$. Issue: Graphs with maxdeg 3 admit all complete graphs as minors. Ergo: Excluding minors leads to an interesting theory,

but this is **not** the theory we are after.

Attempt 3. Graphs excluding K_t as a minor, for some $t \in \mathbb{N}$. Issue: Graphs with maxdeg 3 admit all complete graphs as minors. Ergo: Excluding minors leads to an interesting theory, but this is **not** the theory we are after.

Idea: Think about local minors.

Attempt 3. Graphs excluding K_t as a minor, for some $t \in \mathbb{N}$. Issue: Graphs with maxdeg 3 admit all complete graphs as minors. Ergo: Excluding minors leads to an interesting theory, but this is **not** the theory we are after.

Idea: Think about local minors.

Definition

H is a **depth**-*d* **minor** of $G \Leftrightarrow$

H is obtained from a subgraph of *G* by contracting subgraphs of radius $\leq d$

Attempt 3. Graphs excluding K_t as a minor, for some $t \in \mathbb{N}$. Issue: Graphs with maxdeg 3 admit all complete graphs as minors. Ergo: Excluding minors leads to an interesting theory, but this is **not** the theory we are after.

Idea: Think about local minors.

Definition

H is a **depth**-*d* **minor** of $G \Leftrightarrow$

H is obtained from a subgraph of *G* by contracting subgraphs of radius $\leq d$

Η

Attempt 3. Graphs excluding K_t as a minor, for some $t \in \mathbb{N}$. **Issue:** Graphs with maxdeg 3 admit all complete graphs as minors. **Ergo:** Excluding minors leads to an interesting theory, but this is **not** the theory we are after.

Idea: Think about local minors.

Definition

H is a **depth**-*d* **minor** of $G \Leftrightarrow$

H is obtained from a subgraph of *G* by contracting subgraphs of radius $\leq d$

Intuition: Sparsity \Leftrightarrow Exclusion of **dense** structures at every fixed depth

Intuition: Sparsity ⇔ Exclusion of dense structures at every fixed depth
Definition

 $\nabla_d(G) := \sup \{ \operatorname{avgdeg}(H) : H \text{ is a depth-}d \text{ minor of } G \}$ $\omega_d(G) := \sup \{ t : K_t \text{ is a depth-}d \text{ minor of } G \}.$

Intuition: Sparsity ⇔ Exclusion of dense structures at every fixed depth
Definition

 $\nabla_d(G) := \sup \{ \operatorname{avgdeg}(H) : H \text{ is a depth-}d \text{ minor of } G \}$ $\omega_d(G) := \sup \{ t : K_t \text{ is a depth-}d \text{ minor of } G \}.$

Note: depth-0 minors = subgraphs $\rightsquigarrow \nabla_0(G) = ?$

Intuition: Sparsity ⇔ Exclusion of dense structures at every fixed depth
Definition

$$\nabla_d(G) := \sup \{ \operatorname{avgdeg}(H) : H \text{ is a depth-}d \text{ minor of } G \}$$

$$\omega_d(G) := \sup \{ t : K_t \text{ is a depth-}d \text{ minor of } G \}.$$

Note: depth-0 minors = subgraphs \rightsquigarrow $\nabla_0(G) = \operatorname{mad}(G)$.

Intuition: Sparsity ⇔ Exclusion of dense structures at every fixed depth
Definition

$$\nabla_d(G) := \sup \{ \operatorname{avgdeg}(H) : H \text{ is a depth-}d \text{ minor of } G \}$$

$$\omega_d(G) := \sup \{ t : K_t \text{ is a depth-}d \text{ minor of } G \}.$$

Note: depth-0 minors = subgraphs \rightsquigarrow $\nabla_0(G) = \operatorname{mad}(G)$.

For a **class** of graphs C, we write:

$$abla_d(\mathcal{C})\coloneqq \sup_{G\in\mathcal{C}} \,
abla_d(G) \qquad ext{and} \qquad \omega_d(\mathcal{C})\coloneqq \sup_{G\in\mathcal{C}} \, \omega_d(G).$$

Intuition: Sparsity ⇔ Exclusion of dense structures at every fixed depth
Definition

$$\nabla_d(G) := \sup \{ \operatorname{avgdeg}(H) : H \text{ is a depth-} d \text{ minor of } G \}$$

$$\omega_d(G) := \sup \{ t : K_t \text{ is a depth-} d \text{ minor of } G \}.$$

Note: depth-0 minors = subgraphs \rightsquigarrow $\nabla_0(G) = mad(G)$.

For a **class** of graphs C, we write:

$$abla_d(\mathcal{C})\coloneqq \sup_{G\in\mathcal{C}} \,
abla_d(G) \qquad ext{and} \qquad \omega_d(\mathcal{C})\coloneqq \sup_{G\in\mathcal{C}} \, \omega_d(G).$$

Definition

C has **bounded expansion** if $\nabla_d(C)$ is finite for all $d \in \mathbb{N}$. C is **nowhere dense** if $\omega_d(C)$ is finite for all $d \in \mathbb{N}$.

Equivalently:

Michał Pilipczuk Sparse graphs

Equivalently:

C has **bounded expansion** if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. avgdeg $(H) \leq c(d)$ whenever H is a depth-d minor of some $G \in C$.

Equivalently:

- C has **bounded expansion** if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. avgdeg $(H) \leq c(d)$ whenever H is a depth-d minor of some $G \in C$.
- C is **nowhere dense** if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t.
 - $K_{t(d)}$ is not a depth-*d* minor of any $G \in C$.

Equivalently:

- C has **bounded expansion** if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. avgdeg $(H) \leq c(d)$ whenever H is a depth-d minor of some $G \in C$.
- C is **nowhere dense** if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t.
 - $K_{t(d)}$ is not a depth-*d* minor of any $G \in C$.

Key idea: Sparsity is a property of a class of graphs.

Equivalently:

- C has **bounded expansion** if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. avgdeg $(H) \leq c(d)$ whenever H is a depth-d minor of some $G \in C$.
- C is **nowhere dense** if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t.
 - $K_{t(d)}$ is not a depth-*d* minor of any $G \in C$.

Key idea: Sparsity is a property of a class of graphs.
It is a limit property of graphs from the class.

Equivalently:

- C has **bounded expansion** if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. avgdeg $(H) \leq c(d)$ whenever H is a depth-d minor of some $G \in C$.
- C is **nowhere dense** if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t.

 $K_{t(d)}$ is not a depth-*d* minor of any $G \in C$.

Key idea: Sparsity is a property of a class of graphs.

- It is a **limit property** of graphs from the class.
- Can be formalized using standard limit constructions (P, Toruńczyk).

Equivalently:

- C has **bounded expansion** if for every $d \in \mathbb{N}$ there is $c(d) \in \mathbb{N}$ s.t. avgdeg $(H) \leq c(d)$ whenever H is a depth-d minor of some $G \in C$.
- C is **nowhere dense** if for every $d \in \mathbb{N}$ there is $t(d) \in \mathbb{N}$ s.t.

 $K_{t(d)}$ is not a depth-*d* minor of any $G \in C$.

Key idea: Sparsity is a property of a class of graphs.

- It is a **limit property** of graphs from the class.
- Can be formalized using standard limit constructions (P, Toruńczyk).
- Classes of graphs as basic objects of interest.

Examples and relations

1. Every class of **bounded degree** has **bounded expansion**.
1. Every class of **bounded degree** has **bounded expansion**. **Sol:** Depth-*d* minors have max degree $\leq \Delta^{d+1}$.

- **1.** Every class of **bounded degree** has **bounded expansion**. **Sol:** Depth-*d* minors have max degree $\leq \Delta^{d+1}$.
- 2. Every class that excludes some minor has bounded expansion.

- **1.** Every class of **bounded degree** has **bounded expansion**. **Sol:** Depth-*d* minors have max degree $\leq \Delta^{d+1}$.
- **2**. Every class that **excludes some minor** has **bounded expansion**. **Sol:** K_t -minor-free graphs have avgdeg $\mathcal{O}(t\sqrt{\log t})$ and are minor-closed.

- **1.** Every class of **bounded degree** has **bounded expansion**. **Sol:** Depth-*d* minors have max degree $\leq \Delta^{d+1}$.
- **2**. Every class that **excludes some minor** has **bounded expansion**. **Sol:** K_t -minor-free graphs have avgdeg $\mathcal{O}(t\sqrt{\log t})$ and are minor-closed.
- 3. Every class of **bounded expansion** is **nowhere dense**.

- **1.** Every class of **bounded degree** has **bounded expansion**. **Sol:** Depth-*d* minors have max degree $\leq \Delta^{d+1}$.
- **2**. Every class that **excludes some minor** has **bounded expansion**. **Sol:** K_t -minor-free graphs have avgdeg $\mathcal{O}(t\sqrt{\log t})$ and are minor-closed.
- Every class of bounded expansion is nowhere dense.
 Sol: Cliques have unbounded average degree.

- **1.** Every class of **bounded degree** has **bounded expansion**. **Sol:** Depth-*d* minors have max degree $\leq \Delta^{d+1}$.
- **2**. Every class that **excludes some minor** has **bounded expansion**. **Sol:** K_t -minor-free graphs have avgdeg $\mathcal{O}(t\sqrt{\log t})$ and are minor-closed.
- Every class of bounded expansion is nowhere dense.
 Sol: Cliques have unbounded average degree.
- 4. Consider the class $C = \{G \colon \Delta(G) \leq \operatorname{girth}(G)\}$.

- **1.** Every class of **bounded degree** has **bounded expansion**. **Sol:** Depth-*d* minors have max degree $\leq \Delta^{d+1}$.
- **2**. Every class that **excludes some minor** has **bounded expansion**. **Sol:** K_t -minor-free graphs have avgdeg $\mathcal{O}(t\sqrt{\log t})$ and are minor-closed.
- Every class of bounded expansion is nowhere dense.
 Sol: Cliques have unbounded average degree.
- 4. Consider the class $C = \{G \colon \Delta(G) \leq \operatorname{girth}(G)\}$.

4a: Show that C is **nowhere dense**.

- **1.** Every class of **bounded degree** has **bounded expansion**. **Sol:** Depth-*d* minors have max degree $\leq \Delta^{d+1}$.
- **2**. Every class that **excludes some minor** has **bounded expansion**. **Sol:** K_t -minor-free graphs have avgdeg $\mathcal{O}(t\sqrt{\log t})$ and are minor-closed.
- Every class of bounded expansion is nowhere dense.
 Sol: Cliques have unbounded average degree.
- 4. Consider the class $C = \{G \colon \Delta(G) \leq \operatorname{girth}(G)\}$.

4a: Show that C is **nowhere dense**.

Sol: $\omega_d(G) \ge 3 \Rightarrow d \ge \operatorname{girth}(G)/9 \Rightarrow d \ge \Delta(G)/9 \Rightarrow \omega_d(G) \leqslant (9d)^d$.

- **1.** Every class of **bounded degree** has **bounded expansion**. **Sol:** Depth-*d* minors have max degree $\leq \Delta^{d+1}$.
- **2**. Every class that **excludes some minor** has **bounded expansion**. **Sol:** K_t -minor-free graphs have avgdeg $\mathcal{O}(t\sqrt{\log t})$ and are minor-closed.
- Every class of bounded expansion is nowhere dense.
 Sol: Cliques have unbounded average degree.
- 4. Consider the class $C = \{G \colon \Delta(G) \leq \operatorname{girth}(G)\}$.

4a: Show that C is **nowhere dense**.

Sol: $\omega_d(G) \ge 3 \Rightarrow d \ge \operatorname{girth}(G)/9 \Rightarrow d \ge \Delta(G)/9 \Rightarrow \omega_d(G) \le (9d)^d$. **4b:** Show that \mathcal{C} does **not** have **bounded expansion**.

- **1.** Every class of **bounded degree** has **bounded expansion**. **Sol:** Depth-*d* minors have max degree $\leq \Delta^{d+1}$.
- **2**. Every class that **excludes some minor** has **bounded expansion**. **Sol:** K_t -minor-free graphs have avgdeg $\mathcal{O}(t\sqrt{\log t})$ and are minor-closed.
- Every class of bounded expansion is nowhere dense.
 Sol: Cliques have unbounded average degree.
- 4. Consider the class $C = \{G \colon \Delta(G) \leq \operatorname{girth}(G)\}$.

4a: Show that C is **nowhere dense**.

Sol: $\omega_d(G) \ge 3 \Rightarrow d \ge \operatorname{girth}(G)/9 \Rightarrow d \ge \Delta(G)/9 \Rightarrow \omega_d(G) \leqslant (9d)^d$.

4b: Show that C does **not** have **bounded expansion**.

Sol: Erdős random construction.

- **1.** Every class of **bounded degree** has **bounded expansion**. **Sol:** Depth-*d* minors have max degree $\leq \Delta^{d+1}$.
- **2**. Every class that **excludes some minor** has **bounded expansion**. **Sol:** K_t -minor-free graphs have avgdeg $\mathcal{O}(t\sqrt{\log t})$ and are minor-closed.
- Every class of bounded expansion is nowhere dense.
 Sol: Cliques have unbounded average degree.
- 4. Consider the class $C = \{G \colon \Delta(G) \leq \operatorname{girth}(G)\}$.

4a: Show that C is **nowhere dense**.

Sol: $\omega_d(G) \ge 3 \Rightarrow d \ge \operatorname{girth}(G)/9 \Rightarrow d \ge \Delta(G)/9 \Rightarrow \omega_d(G) \leqslant (9d)^d$.

4b: Show that C does **not** have **bounded expansion**.

Sol: Erdős random construction.

Fact. C is **nowhere dense** $\Rightarrow \forall d, \varepsilon > 0, \nabla_d(G) \leq \mathcal{O}(n^{\varepsilon})$ for all $G \in C$.

The World of Sparsity

Michał Pilipczuk

Sparsity of shallow minors

Generalized coloring numbers

Sparsity of shallow minors

Degeneracy

Weak coloring number

Michał Pilipczuk

Sparse graphs

Generalized coloring numbers

Sparsity of shallow minors

Uniform quasi-wideness

Michał Pilipczuk

Sparse graphs

Many characterizations of **bnd expansion** and **nowhere denseness**.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a **tool**.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a **tool**.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a **tool**.

Original idea: Study the **combinatorics** of sparse graphs.

- Goal: Describe structural properties implied by sparsity.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a **tool**.

- **Goal:** Describe structural properties implied by sparsity.
- These properties can be used to design efficient algorithms.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a **tool**.

- **Goal:** Describe structural properties implied by sparsity.
- These properties can be used to design efficient **algorithms**.
 - Areas: Parameterized, approximation, and distributed algorithms.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a **tool**.

- **Goal:** Describe structural properties implied by sparsity.
- These properties can be used to design efficient **algorithms**.
 - Areas: Parameterized, approximation, and distributed algorithms.
 - Applicable to problems of **local** nature.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a **tool**.

Original idea: Study the **combinatorics** of sparse graphs.

- **Goal:** Describe structural properties implied by sparsity.
- These properties can be used to design efficient algorithms.
 - Areas: Parameterized, approximation, and distributed algorithms.
 - Applicable to problems of **local** nature.

Sparsity delimits tractability of **First Order logic** on graphs.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a **tool**.

Original idea: Study the **combinatorics** of sparse graphs.

- Goal: Describe structural properties implied by sparsity.
- These properties can be used to design efficient algorithms.
 - Areas: Parameterized, approximation, and distributed algorithms.
 - Applicable to problems of **local** nature.

Sparsity delimits tractability of **First Order logic** on graphs.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is subgraph-closed.

Then C is **nowhere dense** \Leftrightarrow FO Model Checking is FPT on C.

Many characterizations of **bnd expansion** and **nowhere denseness**.

- Equivalence shows that we are working with fundamental notions.
- Each characterization is a **tool**.

Original idea: Study the **combinatorics** of sparse graphs.

- Goal: Describe structural properties implied by sparsity.
- These properties can be used to design efficient algorithms.
 - Areas: Parameterized, approximation, and distributed algorithms.
 - Applicable to problems of **local** nature.

Sparsity delimits tractability of First Order logic on graphs.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is subgraph-closed.

Then C is **nowhere dense** \Leftrightarrow FO Model Checking is FPT on C.

Part 2:

Generalized coloring numbers

Definition

G is *d*-degenerate \Leftrightarrow Every subgraph of *G* has a vertex of degree $\leq d$. dgn(*G*) := least *d* for which *G* is *d*-degenerate.

Definition

G is *d*-degenerate \Leftrightarrow Every subgraph of *G* has a vertex of degree $\leqslant d$. dgn(*G*) := least *d* for which *G* is *d*-degenerate.

1. Prove that $mad(G)/2 \leq dgn(G) \leq mad(G)$.

Definition

G is *d*-degenerate \Leftrightarrow Every subgraph of *G* has a vertex of degree $\leqslant d$. dgn(*G*) := least *d* for which *G* is *d*-degenerate.

1. Prove that $mad(G)/2 \leq dgn(G) \leq mad(G)$. **right:** mindeg \leq avgdeg

Definition

G is *d*-degenerate \Leftrightarrow Every subgraph of *G* has a vertex of degree $\leqslant d$. dgn(*G*) := least *d* for which *G* is *d*-degenerate.

1. Prove that mad(G)/2 ≤ dgn(G) ≤ mad(G).
right: mindeg ≤ avgdeg
left: |E(H)| ≤ dgn(G) · |V(H)| by removing vertices one by one.

Definition

G is *d*-degenerate \Leftrightarrow Every subgraph of *G* has a vertex of degree $\leq d$. $dgn(G) \coloneqq$ least d for which G is d-degenerate.

- **1.** Prove that $mad(G)/2 \leq dgn(G) \leq mad(G)$. right: mindeg \leq avgdeg $|E(H)| \leq \operatorname{dgn}(G) \cdot |V(H)|$ by removing vertices one by one. left:
- **2.** Prove that G is d-degenerate \Leftrightarrow ______

G has a **vertex ordering** where each vertex has $\leq d$ neighbors to the left.

Definition

G is *d*-degenerate \Leftrightarrow Every subgraph of *G* has a vertex of degree $\leq d$. $dgn(G) \coloneqq$ least d for which G is d-degenerate.

- **1.** Prove that $mad(G)/2 \leq dgn(G) \leq mad(G)$. right: mindeg \leq avgdeg **left:** $|E(H)| \leq \text{dgn}(G) \cdot |V(H)|$ by removing vertices one by one.
- **2.** Prove that G is d-degenerate \Leftrightarrow ______

G has a **vertex ordering** where each vertex has $\leq d$ neighbors to the left.

 (\Rightarrow) : extract vertices one by one

Definition

G is *d*-degenerate \Leftrightarrow Every subgraph of *G* has a vertex of degree $\leq d$. $dgn(G) \coloneqq$ least d for which G is d-degenerate.

- **1.** Prove that $mad(G)/2 \leq dgn(G) \leq mad(G)$. right: mindeg \leq avgdeg **left:** $|E(H)| \leq \text{dgn}(G) \cdot |V(H)|$ by removing vertices one by one.
- **2.** Prove that G is d-degenerate \Leftrightarrow ______

G has a **vertex ordering** where each vertex has $\leq d$ neighbors to the left.

- extract vertices one by one (⇒):
- (\Leftarrow) : examine the rightmost vertex
Degeneracy

Definition

G is *d*-degenerate \Leftrightarrow Every subgraph of *G* has a vertex of degree $\leq d$. $dgn(G) \coloneqq$ least d for which G is d-degenerate.

- **1.** Prove that $mad(G)/2 \leq dgn(G) \leq mad(G)$. right: mindeg \leq avgdeg **left:** $|E(H)| \leq \text{dgn}(G) \cdot |V(H)|$ by removing vertices one by one.
- **2.** Prove that G is d-degenerate \Leftrightarrow ______

G has a **vertex ordering** where each vertex has $\leq d$ neighbors to the left.

- extract vertices one by one (⇒):
- (\Leftarrow) : examine the rightmost vertex
- **3.** *d*-degenerate graphs are (d + 1)-colorable

Degeneracy

Definition

G is *d*-degenerate \Leftrightarrow Every subgraph of *G* has a vertex of degree $\leq d$. $dgn(G) \coloneqq$ least d for which G is d-degenerate.

- **1.** Prove that $mad(G)/2 \leq dgn(G) \leq mad(G)$. right: mindeg \leq avgdeg **left:** $|E(H)| \leq \text{dgn}(G) \cdot |V(H)|$ by removing vertices one by one.
- **2.** Prove that G is d-degenerate \Leftrightarrow ______

G has a **vertex ordering** where each vertex has $\leq d$ neighbors to the left.

- extract vertices one by one (⇒):
- (\Leftarrow) : examine the rightmost vertex
- **3.** *d*-degenerate graphs are (d + 1)-colorable

Sol: Greedy left-to-right coloring on the ordering.

Idea: A degeneracy ordering exposes a global structure in a graph.

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings $\leftrightarrow ad(\cdot)$, which concerns depth-0 minors.

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings $\leftrightarrow ad(\cdot)$, which concerns depth-0 minors.

Idea: Introduce a generalization of degeneracy orderings to larger depth.

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings $\leftrightarrow ad(\cdot)$, which concerns depth-0 minors.

Idea: Introduce a generalization of degeneracy orderings to larger depth.

These are called **generalized coloring numbers**.

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings \longleftrightarrow mad(\cdot), which concerns depth-0 minors.

Idea: Introduce a generalization of degeneracy orderings to larger depth.

These are called **generalized coloring numbers**.

There are **three** natural ways to make the generalization.

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings \iff mad(\cdot), which concerns depth-0 minors. **Idea:** Introduce a generalization of degeneracy orderings to larger depth.

These are called **generalized coloring numbers**. There are **three** natural ways to make the generalization.

Suppose $d \in \mathbb{N}$, G is a graph, and σ is a vertex ordering.

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings \iff mad(\cdot), which concerns depth-0 minors. **Idea:** Introduce a generalization of degeneracy orderings to larger depth.

These are called **generalized coloring numbers**. There are **three** natural ways to make the generalization.

Suppose $d \in \mathbb{N}$, G is a graph, and σ is a vertex ordering. Consider any vertex v.

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings \iff mad(\cdot), which concerns depth-0 minors. **Idea:** Introduce a generalization of degeneracy orderings to larger depth.

These are called **generalized coloring numbers**. There are **three** natural ways to make the generalization.

Suppose $d \in \mathbb{N}$, G is a graph, and σ is a vertex ordering.

Consider any vertex *v*.

Want: Define " σ -smaller neighbors" of *v* at "depth" *d*.

D1: $u \leq_{\sigma} v$ is weakly *d*-reachable from $v \Leftrightarrow$

There is a *v*-to-*u* path *P* of length $\leq d$ that is entirely $\geq_{\sigma} u$.

D1: $u \leq_{\sigma} v$ is weakly *d*-reachable from $v \Leftrightarrow$

There is a *v*-to-*u* path *P* of length $\leq d$ that is entirely $\geq_{\sigma} u$.

WReach_d[G, σ, v] := { $u \leq_{\sigma} v : u$ is weakly *d*-reachable from v }.

D1: $u \leq_{\sigma} v$ is weakly *d*-reachable from $v \Leftrightarrow$

There is a *v*-to-*u* path *P* of length $\leq d$ that is entirely $\geq_{\sigma} u$.

WReach_d[G, σ, v] := { $u \leq_{\sigma} v : u$ is weakly d-reachable from v }.

D2: $u \leq_{\sigma} v$ is **strongly** *d***-reachable** from $v \Leftrightarrow$ There is a *v*-to-*u* path *P* of length $\leq d$ that is $\geq_{\sigma} v$, apart from *u*

D1: $u \leq_{\sigma} v$ is weakly *d*-reachable from $v \Leftrightarrow$

There is a *v*-to-*u* path *P* of length $\leq d$ that is entirely $\geq_{\sigma} u$.

WReach_d[G, σ, v] := { $u \leq_{\sigma} v : u$ is weakly d-reachable from v }.

D2: $u \leq_{\sigma} v$ is strongly *d*-reachable from $v \Leftrightarrow$ There is a *v*-to-*u* path *P* of length $\leq d$ that is $\geq_{\sigma} v$, apart from *u* SReach_d[*G*, σ , v] := { $u \leq_{\sigma} v : u$ is strongly *d*-reachable from v }.

D1: $u \leq_{\sigma} v$ is weakly *d*-reachable from $v \Leftrightarrow$

There is a *v*-to-*u* path *P* of length $\leq d$ that is entirely $\geq_{\sigma} u$.

WReach_d[G, σ, v] := { $u \leq_{\sigma} v : u$ is weakly d-reachable from v }.

D2: $u \leq_{\sigma} v$ is strongly *d*-reachable from $v \Leftrightarrow$ There is a *v*-to-*u* path *P* of length $\leq d$ that is $\geq_{\sigma} v$, apart from *u* SReach_d[*G*, σ , *v*] := { $u \leq_{\sigma} v : u$ is strongly *d*-reachable from *v* }.

Definition

For a graph *G* and vertex ordering σ , we define:

 $\operatorname{wcol}_d(G, \sigma) \coloneqq \max_v |\operatorname{WReach}_d[G, \sigma, v]|,$ $\operatorname{scol}_d(G, \sigma) \coloneqq \max_v |\operatorname{SReach}_d[G, \sigma, v]|,$ $\operatorname{adm}_d(G, \sigma) \coloneqq \max_v \operatorname{adm}_d(G, \sigma, v),$

Definition

For a graph *G* and vertex ordering σ , we define:

 $\operatorname{wcol}_d(G, \sigma) \coloneqq \max_v |\operatorname{WReach}_d[G, \sigma, v]|,$ $\operatorname{scol}_d(G, \sigma) \coloneqq \max_v |\operatorname{SReach}_d[G, \sigma, v]|,$ $\operatorname{adm}_d(G, \sigma) \coloneqq \max_v \operatorname{adm}_d(G, \sigma, v),$

 $\operatorname{wcol}_d(G) \coloneqq \min_{\sigma} \operatorname{wcol}_d(G, \sigma),$ $\operatorname{scol}_d(G) \coloneqq \min_{\sigma} \operatorname{scol}_d(G, \sigma),$ $\operatorname{adm}_d(G) \coloneqq \min_{\sigma} \operatorname{adm}_d(G, \sigma).$

Definition

For a graph *G* and vertex ordering σ , we define:

 $\operatorname{wcol}_d(G, \sigma) \coloneqq \max_v |\operatorname{WReach}_d[G, \sigma, v]|,$ $\operatorname{scol}_d(G, \sigma) \coloneqq \max_v |\operatorname{SReach}_d[G, \sigma, v]|,$ $\operatorname{adm}_d(G, \sigma) \coloneqq \max_v \operatorname{adm}_d(G, \sigma, v),$ $\operatorname{wcol}_d(G) \coloneqq \min_{\sigma} \operatorname{wcol}_d(G, \sigma),$ $\operatorname{scol}_d(G) \coloneqq \min_{\sigma} \operatorname{scol}_d(G, \sigma),$ $\operatorname{adm}_d(G) \coloneqq \min_{\sigma} \operatorname{adm}_d(G, \sigma).$

1. $dgn(G) = adm_0(G) = scol_0(G) - 1 = wcol_0(G) - 1$.

Definition

For a graph *G* and vertex ordering σ , we define:

 $\operatorname{wcol}_d(G, \sigma) \coloneqq \max_v |\operatorname{WReach}_d[G, \sigma, v]|,$ $\operatorname{scol}_d(G, \sigma) \coloneqq \max_v |\operatorname{SReach}_d[G, \sigma, v]|,$ $\operatorname{adm}_d(G, \sigma) \coloneqq \max_v \operatorname{adm}_d(G, \sigma, v),$ $\operatorname{wcol}_d(G) \coloneqq \min_{\sigma} \operatorname{wcol}_d(G, \sigma),$ $\operatorname{scol}_d(G) \coloneqq \min_{\sigma} \operatorname{scol}_d(G, \sigma),$ $\operatorname{adm}_d(G) \coloneqq \min_{\sigma} \operatorname{adm}_d(G, \sigma).$

1.
$$dgn(G) = adm_0(G) = scol_0(G) - 1 = wcol_0(G) - 1$$
.

2. $\operatorname{adm}_d(G) \leq \operatorname{scol}_d(G) \leq \operatorname{wcol}_d(G)$.

Definition

For a graph *G* and vertex ordering σ , we define:

 $\operatorname{wcol}_d(G, \sigma) \coloneqq \max_v |\operatorname{WReach}_d[G, \sigma, v]|,$ $\operatorname{scol}_d(G, \sigma) \coloneqq \max_v |\operatorname{SReach}_d[G, \sigma, v]|,$ $\operatorname{adm}_d(G, \sigma) \coloneqq \max_v \operatorname{adm}_d(G, \sigma, v),$ $\operatorname{wcol}_d(G) \coloneqq \min_{\sigma} \operatorname{wcol}_d(G, \sigma),$ $\operatorname{scol}_d(G) \coloneqq \min_{\sigma} \operatorname{scol}_d(G, \sigma),$ $\operatorname{adm}_d(G) \coloneqq \min_{\sigma} \operatorname{adm}_d(G, \sigma).$

1.
$$dgn(G) = adm_0(G) = scol_0(G) - 1 = wcol_0(G) - 1$$
.

2.
$$\operatorname{adm}_d(G) \leq \operatorname{scol}_d(G) \leq \operatorname{wcol}_d(G)$$
.

Now: These parameters are functionally equivalent.

Equivalence of generalized coloring numbers

-000000000000000000000000000000000

1. $\operatorname{scol}_d(G) \leq 1 + \operatorname{adm}_d(G)^d$.

2. wcol_d(G) \leq 1 + scol_d(G) + scol_d(G)² + ... + scol_d(G)^d.

Lemma

For a graph *G* and $d \in \mathbb{N}$, we have:

 $\operatorname{adm}_d(G) \leqslant 6d(\nabla_d(G)+1)^3,$

 $\nabla_d(G) \leqslant \operatorname{wcol}_{4d+1}(G).$

Lemma

For a graph *G* and $d \in \mathbb{N}$, we have:

 $\operatorname{adm}_d(G) \leqslant 6d(\nabla_d(G)+1)^3$,

$$\nabla_d(G) \leqslant \operatorname{wcol}_{4d+1}(G).$$

Proof of $\nabla_d(G) \leq \operatorname{wcol}_{4d+1}(G)$:

Lemma

For a graph *G* and $d \in \mathbb{N}$, we have:

 $\operatorname{adm}_d(G) \leqslant 6d(\nabla_d(G)+1)^3$,

$$abla_d(G) \leqslant \operatorname{wcol}_{4d+1}(G).$$

Proof of $\nabla_d(G) \leq \operatorname{wcol}_{4d+1}(G)$:

 $-0000000000000000000000000000000000 \rightarrow$

- Let $H \leq_d G$ and $\{J_u : u \in V(H)\}$ be a model.
- $\operatorname{Let} \phi(u) \coloneqq \min_{\sigma} V(J_u).$
- Let $w \in V(H)$ be such that $\phi(w)$ is σ -maximal.
- **Obs:** For each $u \in N_H(w)$, we have $\phi(u) \in WReach_{4d+1}[G, \sigma, \phi(w)]$.
- **Cor**: *w* has degree $\leq \operatorname{wcol}_{4d+1}(G)$ in *H*.
- − **Cor**: Every $H \leq_d G$ has a vertex of degree $\leq \operatorname{wcol}_{4d+1}(G)$. \Box

Sketch of proof of $\operatorname{adm}_d(G) \leq 6d(\nabla_d(G) + 1)^3$:

Sketch of proof of $\operatorname{adm}_d(G) \leq 6d(\nabla_d(G) + 1)^3$:

- There is a greedy algorithm, similarly as for degeneracy.

Sketch of proof of $\operatorname{adm}_d(G) \leq 6d(\nabla_d(G) + 1)^3$:

- There is a greedy algorithm, similarly as for degeneracy.
- If the algorithm gets stuck, it uncovers the following structure:

Sketch of proof of $\operatorname{adm}_d(G) \leq 6d(\nabla_d(G) + 1)^3$:

- There is a greedy algorithm, similarly as for degeneracy.
- If the algorithm gets stuck, it uncovers the following structure:
- We can now find a dense depth-d minor.

Sketch of proof of $\operatorname{adm}_d(G) \leq 6d(\nabla_d(G) + 1)^3$:

- There is a greedy algorithm, similarly as for degeneracy.
- If the algorithm gets stuck, it uncovers the following structure:

We can now find a dense depth-d minor.

Theorem

For a class of graphs C, the following are equivalent:

- \mathcal{C} has bounded expansion;
- $abla_d(\mathcal{C})$ is finite for all $d \in \mathbb{N}$;
- $-\operatorname{wcol}_d(\mathcal{C})$ is finite for all $d \in \mathbb{N}$;
- $-\operatorname{scol}_d(\mathcal{C})$ is finite for all $d \in \mathbb{N}$;
- $-\operatorname{adm}_d(\mathcal{C})$ is finite for all $d \in \mathbb{N}$.

Distance-*d* **domination**

Definition

Let *G* be a graph and $d \in \mathbb{N}$.

 $D \subseteq V(G)$ is a **dist-d dominating set** if $\bigcup_{u \in D} \text{Ball}_d(u) = V(G)$.

Distance-*d* **domination**

Definition

Let *G* be a graph and $d \in \mathbb{N}$.

 $D \subseteq V(G)$ is a **dist-d dominating set** if $\bigcup_{u \in D} \operatorname{Ball}_d(u) = V(G)$.

 $dom_d(G) := min size of a dist-d dominating set in G$

Distance-*d* **domination**

Definition

Let *G* be a graph and $d \in \mathbb{N}$. $D \subseteq V(G)$ is a **dist-***d* **dominating set** if $\bigcup_{u \in D} \text{Ball}_d(u) = V(G)$. $\text{dom}_d(G) \coloneqq$ min size of a dist-*d* dominating set in *G*

Let σ be a vertex ordering of *G*. Consider the algorithm:
Distance-*d* **domination**

Definition

Let *G* be a graph and $d \in \mathbb{N}$. $D \subseteq V(G)$ is a **dist-***d* **dominating set** if $\bigcup_{u \in D} \text{Ball}_d(u) = V(G)$. $\text{dom}_d(G) \coloneqq$ min size of a dist-*d* dominating set in *G*

Let σ be a vertex ordering of *G*. Consider the algorithm:

- Every vertex v points to $\min_{\sigma} \operatorname{WReach}_d[G, \sigma, v]$.

Distance-*d* **domination**

Definition

Let *G* be a graph and $d \in \mathbb{N}$. $D \subseteq V(G)$ is a **dist-***d* **dominating set** if $\bigcup_{u \in D} \text{Ball}_d(u) = V(G)$. $\text{dom}_d(G) \coloneqq$ min size of a dist-*d* dominating set in *G*

Let σ be a vertex ordering of *G*. Consider the algorithm:

- Every vertex v points to $\min_{\sigma} \operatorname{WReach}_d[G, \sigma, v]$.
- Let D := set of vertices that are **pointed** to.

Distance-*d* **domination**

Definition

Let *G* be a graph and $d \in \mathbb{N}$. $D \subseteq V(G)$ is a **dist-***d* **dominating set** if $\bigcup_{u \in D} \text{Ball}_d(u) = V(G)$. $\text{dom}_d(G) \coloneqq$ min size of a dist-*d* dominating set in *G*

Let σ be a vertex ordering of *G*. Consider the algorithm:

- Every vertex v points to $\min_{\sigma} \operatorname{WReach}_d[G, \sigma, v]$.
- Let D := set of vertices that are **pointed** to.
- **1.** Prove that $|D| \leq \operatorname{wcol}_{2d}(G, \sigma) \cdot \operatorname{dom}_d(G)$.

-0000000000000000000000000000000000

Cor: Constant-factor apx algorithm for $dom_d(G)$ in bnd expansion classes.

Cor: Constant-factor apx algorithm for dom_d(G) in bnd expansion classes. - Compute σ with wcol_{2d}(G, σ) bounded by a constant.

Cor: Constant-factor apx algorithm for $dom_d(G)$ in bnd expansion classes.

- Compute σ with wcol_{2d}(G, σ) bounded by a constant.
- Each v picks $\min_{\sigma} \operatorname{WReach}_d[G, \sigma, v]$.

Cor: Constant-factor apx algorithm for $dom_d(G)$ in bnd expansion classes.

- Compute σ with wcol_{2d}(G, σ) bounded by a constant.
- Each v picks $\min_{\sigma} \operatorname{WReach}_d[G, \sigma, v]$.
- Output the picked vertices.

Cor: Constant-factor apx algorithm for $dom_d(G)$ in bnd expansion classes.

- Compute σ with wcol_{2d}(G, σ) bounded by a constant.
- Each v picks $\min_{\sigma} \operatorname{WReach}_d[G, \sigma, v]$.
- Output the picked vertices.

Obs: $dom_d(G)$ is the **hitting number** for radius-*d* balls.

Cor: Constant-factor apx algorithm for $dom_d(G)$ in bnd expansion classes.

- Compute σ with wcol_{2d}(G, σ) bounded by a constant.
- Each v picks $\min_{\sigma} \operatorname{WReach}_d[G, \sigma, v]$.
- Output the picked vertices.

Obs: $dom_d(G)$ is the **hitting number** for radius-*d* balls. **Def:** Let $sca_d(G)$ be the **packing number** for radius-*d* balls.

Cor: Constant-factor apx algorithm for $dom_d(G)$ in bnd expansion classes.

- Compute σ with wcol_{2d}(G, σ) bounded by a constant.
- Each v picks $\min_{\sigma} \operatorname{WReach}_d[G, \sigma, v]$.
- Output the picked vertices.

Obs: $dom_d(G)$ is the **hitting number** for radius-*d* balls. **Def:** Let $sca_d(G)$ be the **packing number** for radius-*d* balls. Obviously $sca_d(G) \leq dom_d(G)$, but the gap is unbounded in general.

Cor: Constant-factor apx algorithm for $dom_d(G)$ in bnd expansion classes.

- Compute σ with wcol_{2d}(G, σ) bounded by a constant.
- Each v picks $\min_{\sigma} \operatorname{WReach}_d[G, \sigma, v]$.
- Output the picked vertices.

Obs: $dom_d(G)$ is the **hitting number** for radius-*d* balls. **Def:** Let $sca_d(G)$ be the **packing number** for radius-*d* balls. Obviously $sca_d(G) \leq dom_d(G)$, but the gap is unbounded in general.

Theorem (Dvořák)

For every G and $d \in \mathbb{N}$, we have $\operatorname{dom}_d(G) \leq \operatorname{wcol}_{2d}(G)^2 \cdot \operatorname{sca}_d(G)$.

Cor: Constant-factor apx algorithm for $dom_d(G)$ in bnd expansion classes.

- Compute σ with wcol_{2d}(G, σ) bounded by a constant.
- Each v picks $\min_{\sigma} \operatorname{WReach}_d[G, \sigma, v]$.
- Output the picked vertices.

Obs: $dom_d(G)$ is the **hitting number** for radius-*d* balls. **Def:** Let $sca_d(G)$ be the **packing number** for radius-*d* balls. Obviously $sca_d(G) \leq dom_d(G)$, but the gap is unbounded in general.

Theorem (Dvořák)

For every *G* and $d \in \mathbb{N}$, we have $\operatorname{dom}_d(G) \leq \operatorname{wcol}_{2d}(G)^2 \cdot \operatorname{sca}_d(G)$.

Cor: Constant-factor gap in bounded expansion classes.

Cor: Constant-factor apx algorithm for $dom_d(G)$ in bnd expansion classes.

- Compute σ with wcol_{2d}(G, σ) bounded by a constant.
- Each v picks $\min_{\sigma} \operatorname{WReach}_d[G, \sigma, v]$.
- Output the picked vertices.

Obs: $dom_d(G)$ is the **hitting number** for radius-*d* balls. **Def:** Let $sca_d(G)$ be the **packing number** for radius-*d* balls. Obviously $sca_d(G) \leq dom_d(G)$, but the gap is unbounded in general.

Theorem (Dvořák)

For every *G* and $d \in \mathbb{N}$, we have $\operatorname{dom}_d(G) \leq \operatorname{wcol}_{2d}(G)^2 \cdot \operatorname{sca}_d(G)$.

Cor: Constant-factor gap in bounded expansion classes. **Proof:** A greedy procedure on a vertex ordering witnessing $\operatorname{wcol}_{2d}(G)$.

Part 3:

Treedepth and low treedepth colorings

Definition

Elimination forest of *G* is a rooted forest *F* with V(F) = V(G) s.t:

u, v adjacent in $G \Rightarrow u, v$ in ancestor/descendant relation in F

Definition

Elimination forest of *G* is a rooted forest *F* with V(F) = V(G) s.t:

u, v adjacent in $G \Rightarrow u, v$ in ancestor/descendant relation in Ftd(G) := least possible depth of an elimination forest of G.

Definition

Elimination forest of *G* is a rooted forest *F* with V(F) = V(G) s.t:

u, v adjacent in $G \Rightarrow u, v$ in ancestor/descendant relation in Ftd(G) := least possible depth of an elimination forest of G.

Basic remarks:

Definition

Elimination forest of *G* is a rooted forest *F* with V(F) = V(G) s.t:

u, v adjacent in $G \Rightarrow u, v$ in ancestor/descendant relation in Ftd(G) := least possible depth of an elimination forest of G.

Basic remarks:

- If *G* is connected, then *F* must be a tree.

Definition

Elimination forest of *G* is a rooted forest *F* with V(F) = V(G) s.t:

u, v adjacent in $G \Rightarrow u, v$ in ancestor/descendant relation in Ftd(G) := least possible depth of an elimination forest of G.

Basic remarks:

- If *G* is connected, then *F* must be a tree.
- $-H \subseteq G \quad \Rightarrow \quad \operatorname{td}(H) \leqslant \operatorname{td}(G)$

Definition

Elimination forest of *G* is a rooted forest *F* with V(F) = V(G) s.t:

u, v adjacent in $G \Rightarrow u, v$ in ancestor/descendant relation in Ftd(G) := least possible depth of an elimination forest of G.

Basic remarks:

- If G is connected, then F must be a tree.

$$-H \subseteq G \quad \Rightarrow \quad \mathrm{td}(H) \leqslant \mathrm{td}(G)$$

 $-\operatorname{tw}(G)\leqslant\operatorname{td}(G)\leqslant\operatorname{tw}(G)\cdot\log n$

Definition

Elimination forest of *G* is a rooted forest *F* with V(F) = V(G) s.t:

u, v adjacent in $G \Rightarrow u, v$ in ancestor/descendant relation in Ftd(G) := least possible depth of an elimination forest of G.

Basic remarks:

- If G is connected, then F must be a tree.

$$-H \subseteq G \Rightarrow \operatorname{td}(H) \leq \operatorname{td}(G)$$

 $-\operatorname{tw}(G) \leq \operatorname{td}(G) \leq \operatorname{tw}(G) \cdot \log n$
 $-\operatorname{td}(G) = \operatorname{wcol}_{\infty}(G)$

Consider the following one-player **game** played on a graph *G* in rounds:

- **Each round:** Remove one vertex from each connected component.

Consider the following one-player **game** played on a graph *G* in rounds:

- Each round: Remove one vertex from each connected component.

Fact. td(G) = min # rounds needed to eliminate the whole graph

Consider the following one-player **game** played on a graph *G* in rounds:

- **Each round:** Remove one vertex from each connected component.

Fact. td(G) = min # rounds needed to eliminate the whole graph (\geq) : Eliminate elimination forest level by level.

Consider the following one-player **game** played on a graph *G* in rounds:

- **Each round:** Remove one vertex from each connected component.

Fact. td(G) = min # rounds needed to eliminate the whole graph
(≥): Eliminate elimination forest level by level.
(≤): Elimination strategy yields an elimination forest.

Consider the following one-player **game** played on a graph *G* in rounds:

- **Each round:** Remove one vertex from each connected component.

Fact. td(G) = min # rounds needed to eliminate the whole graph
(≥): Eliminate elimination forest level by level.
(≤): Elimination strategy yields an elimination forest.

1. Compute:

 $\operatorname{td}(K_n) =$

 $\operatorname{td}(P_n) =$

Intuition:

Intuition:

- Low td coloring: Decomposition of a graph into very simple pieces.

Intuition:

- Low td coloring: Decomposition of a graph into very simple pieces.
- very simple *work* bnd treedepth

Intuition:

- Low td coloring: Decomposition of a graph into very simple pieces.
- very simple *work* bnd treedepth
- Thm: If \mathcal{C} has bnd expansion,

then each $G \in C$ has such a decomposition.

Intuition:

- Low td coloring: Decomposition of a graph into very simple pieces.
- very simple *works bnd treedepth*
- Thm: If C has bnd expansion,

then each $G \in C$ has such a decomposition.

Fix C of **bnd expansion**, $G \in C$, and a parameter $p \in \mathbb{N}$.

Intuition:

- Low td coloring: Decomposition of a graph into very simple pieces.
- very simple *work* bnd treedepth
- Thm: If C has bnd expansion,

then each $G \in C$ has such a decomposition.

Fix C of **bnd expansion**, $G \in C$, and a parameter $p \in \mathbb{N}$.

Let σ be a vertex ordering witnessing the value of wcol_{2^{p-1}}(*G*).

Intuition:

- Low td coloring: Decomposition of a graph into very simple pieces.
- very simple *work* bnd treedepth
- Thm: If C has bnd expansion,

then each $G \in C$ has such a decomposition.

Fix C of **bnd expansion**, $G \in C$, and a parameter $p \in \mathbb{N}$. Let σ be a vertex ordering witnessing the value of $\operatorname{wcol}_{2^{p-1}}(G)$. Let ϕ be the greedy coloring with $\operatorname{wcol}_{2^{p-1}}(G)$ colors s.t.: For each $v, \phi(v) \notin$ colors given to $\operatorname{WReach}_{2^{p-1}}(G) \setminus \{v\}$ by ϕ .
Constructing a low td coloring

1. *P* is a path on 2^{p-1} vertices \Rightarrow *P* receives $\ge p$ different colors.

2. $H \subseteq G$ is connected and receives $\leq p$ colors \Rightarrow *H* has a vertex of unique color.

3. $H \subseteq G$ receives $\leq p$ colors \Rightarrow td(H) $\leq p$.

Theorem (low td colorings)

Let C be a class of **bnd expansion** and $p \in \mathbb{N}$. Then there is $M(p) \in \mathbb{N}$

such that every $G \in C$ has a coloring with M(p) colors satisfying:

Every *p* colors together induce a subgraph of treedepth $\leq p$.

Theorem (low td colorings)

Let C be a class of **bnd expansion** and $p \in \mathbb{N}$. Then there is $M(p) \in \mathbb{N}$ such that every $G \in C$ has a coloring with M(p) colors satisfying:

Every *p* colors together induce a subgraph of treedepth $\leq p$.

Note: In our proof, $M(p) = \operatorname{wcol}_{2^{p-1}}(\mathcal{C})$.

Theorem (low td colorings)

Let C be a class of **bnd expansion** and $p \in \mathbb{N}$. Then there is $M(p) \in \mathbb{N}$ such that every $G \in C$ has a coloring with M(p) colors satisfying: Every p colors together induce a subgraph of treedepth $\leq p$.

Note: In our proof, $M(p) = \operatorname{wcol}_{2^{p-1}}(\mathcal{C})$.

Theorem (low td coverings)

Let C be a class of **bnd expansion** and $p \in \mathbb{N}$. Then there is $N(p) \in \mathbb{N}$ such that in every $G \in C$ there are vertex subsets $A_1, \ldots, A_{N(p)}$ satisfying:

- $-\operatorname{td}(G[A_i]) \leq p$ for each *i*; and
- for each $X \subseteq V(G)$ with $|X| \leq p$, there is A_i such that $X \subseteq A_i$.

Theorem (low td colorings)

Let C be a class of **bnd expansion** and $p \in \mathbb{N}$. Then there is $M(p) \in \mathbb{N}$ such that every $G \in C$ has a coloring with M(p) colors satisfying: Every p colors together induce a subgraph of treedepth $\leq p$.

Note: In our proof, $M(p) = \operatorname{wcol}_{2^{p-1}}(\mathcal{C})$.

Theorem (low td coverings)

Let C be a class of **bnd expansion** and $p \in \mathbb{N}$. Then there is $N(p) \in \mathbb{N}$ such that in every $G \in C$ there are vertex subsets $A_1, \ldots, A_{N(p)}$ satisfying:

 $-\operatorname{td}(G[A_i]) \leq p$ for each *i*; and

- for each $X \subseteq V(G)$ with $|X| \leq p$, there is A_i such that $X \subseteq A_i$.

Proof:

Theorem (low td colorings)

Let C be a class of **bnd expansion** and $p \in \mathbb{N}$. Then there is $M(p) \in \mathbb{N}$ such that every $G \in C$ has a coloring with M(p) colors satisfying: Every p colors together induce a subgraph of treedepth $\leq p$.

Note: In our proof, $M(p) = \operatorname{wcol}_{2^{p-1}}(\mathcal{C})$.

Theorem (low td coverings)

Let C be a class of **bnd expansion** and $p \in \mathbb{N}$. Then there is $N(p) \in \mathbb{N}$ such that in every $G \in C$ there are vertex subsets $A_1, \ldots, A_{N(p)}$ satisfying:

- $-\operatorname{td}(G[A_i]) \leq p$ for each *i*; and
- for each $X \subseteq V(G)$ with $|X| \leq p$, there is A_i such that $X \subseteq A_i$.

Proof:

$$- \{A_1, A_2, \ldots, A_{N(p)}\} =$$
 subsets of *p* colors.

Theorem (low td colorings)

Let C be a class of **bnd expansion** and $p \in \mathbb{N}$. Then there is $M(p) \in \mathbb{N}$ such that every $G \in C$ has a coloring with M(p) colors satisfying: Every p colors together induce a subgraph of treedepth $\leq p$.

Note: In our proof, $M(p) = \operatorname{wcol}_{2^{p-1}}(\mathcal{C})$.

Theorem (low td coverings)

Let C be a class of **bnd expansion** and $p \in \mathbb{N}$. Then there is $N(p) \in \mathbb{N}$ such that in every $G \in C$ there are vertex subsets $A_1, \ldots, A_{N(p)}$ satisfying:

- $-\operatorname{td}(G[A_i]) \leq p$ for each *i*; and
- for each $X \subseteq V(G)$ with $|X| \leq p$, there is A_i such that $X \subseteq A_i$.

Proof:

$$- \{A_1, A_2, \dots, A_{N(p)}\} = \text{subsets of } p \text{ colors.} \\ - N(p) = \binom{M(p)}{p}$$

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V(Q)|. (Imagine p = 50)

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V(Q)|. (Imagine p = 50)

Trivial: running time $\mathcal{O}(|V(G)|^p)$.

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let $p \coloneqq |V(Q)|$.

(Imagine p = 50)

Trivial: running time $\mathcal{O}(|V(G)|^p)$.

– In general, running time $|V(G)|^{o(p)}$ is unlikely.

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V(Q)|. (Imagine p = 50)

Trivial: running time $\mathcal{O}(|V(G)|^p)$.

- In general, running time $|V(G)|^{o(p)}$ is unlikely.

Supposing $G \in C$ where C has **bnd expansion**, we can do as follows:

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V(Q)|. (Imagine p = 50)

Trivial: running time $\mathcal{O}(|V(G)|^p)$.

- In general, running time $|V(G)|^{o(p)}$ is unlikely.

Supposing $G \in C$ where C has **bnd expansion**, we can do as follows:

- Compute a treedepth-*p* cover $A_1, \ldots, A_{N(p)}$ of *G*.

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let $p \coloneqq |V(Q)|$. (Imagine p = 50)

Trivial: running time $\mathcal{O}(|V(G)|^p)$.

– In general, running time $|V(G)|^{o(p)}$ is unlikely.

Supposing $G \in C$ where C has **bnd expansion**, we can do as follows:

- Compute a treedepth-*p* cover $A_1, \ldots, A_{N(p)}$ of *G*.
- For each *i*, test if $Q \subseteq G[A_i]$ by dynamic programming in linear time.

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let $p \coloneqq |V(Q)|$. (Imagine p = 50)

Trivial: running time $\mathcal{O}(|V(G)|^p)$.

– In general, running time $|V(G)|^{o(p)}$ is unlikely.

Supposing $G \in C$ where C has **bnd expansion**, we can do as follows:

- Compute a treedepth-*p* cover $A_1, \ldots, A_{N(p)}$ of *G*.
- For each *i*, test if $Q \subseteq G[A_i]$ by dynamic programming in linear time.
- **Obs:** $Q \subseteq G \Leftrightarrow Q \subseteq G[A_i]$ for some *i*.

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let $p \coloneqq |V(Q)|$. (Imagine p = 50)

Trivial: running time $\mathcal{O}(|V(G)|^p)$.

- In general, running time $|V(G)|^{o(p)}$ is unlikely.

Supposing $G \in C$ where C has **bnd expansion**, we can do as follows:

- Compute a treedepth-*p* cover $A_1, \ldots, A_{N(p)}$ of *G*.
- For each *i*, test if $Q \subseteq G[A_i]$ by dynamic programming in linear time.
- **Obs:** $Q \subseteq G \iff Q \subseteq G[A_i]$ for some *i*.

Cor: A linear-time algorithm testing whether $Q \subseteq G$.

Theorem

Let C be a class of **bnd expansion** and $d \in \mathbb{N}$ be **odd**. Then there is

 $L(d) \in \mathbb{N}$ such that every $G \in C$ has a coloring ϕ with L(d) colors satisfying:

 $dist(u, v) = d \qquad \Rightarrow \qquad \phi(u) \neq \phi(v).$

Theorem

Let C be a class of **bnd expansion** and $d \in \mathbb{N}$ be **odd**. Then there is $L(d) \in \mathbb{N}$ such that every $G \in C$ has a coloring ϕ with L(d) colors satisfying: $\operatorname{dist}(u, v) = d \qquad \Rightarrow \qquad \phi(u) \neq \phi(v).$

Lemma

If td(G) = p, then G has a coloring with $2^p - 1$ colors such that dist(u, v) is **odd** $\Rightarrow \phi(u) \neq \phi(v)$.

Theorem

Let C be a class of **bnd expansion** and $d \in \mathbb{N}$ be **odd**. Then there is $L(d) \in \mathbb{N}$ such that every $G \in C$ has a coloring ϕ with L(d) colors satisfying: $\operatorname{dist}(u, v) = d \qquad \Rightarrow \qquad \phi(u) \neq \phi(v).$

Lemma

If td(G) = p, then G has a coloring with $2^p - 1$ colors such that dist(u, v) is **odd** $\Rightarrow \phi(u) \neq \phi(v)$.

Lemma \Rightarrow **Theorem**:

Theorem

Let C be a class of **bnd expansion** and $d \in \mathbb{N}$ be **odd**. Then there is $L(d) \in \mathbb{N}$ such that every $G \in C$ has a coloring ϕ with L(d) colors satisfying: $\operatorname{dist}(u, v) = d \qquad \Rightarrow \qquad \phi(u) \neq \phi(v).$

Lemma

If td(G) = p, then G has a coloring with $2^p - 1$ colors such that dist(u, v) is **odd** $\Rightarrow \phi(u) \neq \phi(v)$.

Lemma \Rightarrow **Theorem**:

- Let $\{A_1, \ldots, A_{N(d+1)}\}$ be a treedepth-(d+1) covering of *G*.

Theorem

Let C be a class of **bnd expansion** and $d \in \mathbb{N}$ be **odd**. Then there is $L(d) \in \mathbb{N}$ such that every $G \in C$ has a coloring ϕ with L(d) colors satisfying: $\operatorname{dist}(u, v) = d \qquad \Rightarrow \qquad \phi(u) \neq \phi(v).$

Lemma

If td(G) = p, then G has a coloring with $2^p - 1$ colors such that dist(u, v) is **odd** $\Rightarrow \phi(u) \neq \phi(v)$.

Lemma \Rightarrow **Theorem**:

- Let $\{A_1, \ldots, A_{N(d+1)}\}$ be a treedepth-(d+1) covering of *G*.
- Color each $G[A_i]$ using Lemma with $2^{d+1} 1$ colors.

Theorem

Let C be a class of **bnd expansion** and $d \in \mathbb{N}$ be **odd**. Then there is $L(d) \in \mathbb{N}$ such that every $G \in C$ has a coloring ϕ with L(d) colors satisfying: $\operatorname{dist}(u, v) = d \qquad \Rightarrow \qquad \phi(u) \neq \phi(v).$

Lemma

If td(G) = p, then G has a coloring with $2^p - 1$ colors such that dist(u, v) is **odd** $\Rightarrow \phi(u) \neq \phi(v)$.

Lemma \Rightarrow **Theorem**:

- Let $\{A_1, \ldots, A_{N(d+1)}\}$ be a treedepth-(d+1) covering of *G*.
- Color each $G[A_i]$ using Lemma with $2^{d+1} 1$ colors.
- Construct the product coloring.

Theorem

Let C be a class of **bnd expansion** and $d \in \mathbb{N}$ be **odd**. Then there is $L(d) \in \mathbb{N}$ such that every $G \in C$ has a coloring ϕ with L(d) colors satisfying: $\operatorname{dist}(u, v) = d \qquad \Rightarrow \qquad \phi(u) \neq \phi(v).$

Lemma

If td(G) = p, then G has a coloring with $2^p - 1$ colors such that dist(u, v) is **odd** $\Rightarrow \phi(u) \neq \phi(v)$.

Lemma \Rightarrow **Theorem**:

- Let $\{A_1, \ldots, A_{N(d+1)}\}$ be a treedepth-(d+1) covering of *G*.
- Color each $G[A_i]$ using Lemma with $2^{d+1} 1$ colors.
- Construct the product coloring.

 $- L(d) = (2^{d+1})^{N(d+1)}.$

Theorem

Let C be a class of **bnd expansion** and $d \in \mathbb{N}$ be **odd**. Then there is $L(d) \in \mathbb{N}$ such that every $G \in C$ has a coloring ϕ with L(d) colors satisfying: $\operatorname{dist}(u, v) = d \qquad \Rightarrow \qquad \phi(u) \neq \phi(v).$

Lemma

If td(G) = p, then G has a coloring with $2^p - 1$ colors such that dist(u, v) is **odd** $\Rightarrow \phi(u) \neq \phi(v)$.

Lemma \Rightarrow **Theorem**:

- Let $\{A_1, \ldots, A_{N(d+1)}\}$ be a treedepth-(d+1) covering of *G*.
- Color each $G[A_i]$ using Lemma with $2^{d+1} 1$ colors.
- Construct the product coloring.
- $L(d) = (2^{d+1})^{N(d+1)}.$
- **Obs:** A *u*-to-*v* path of length *d* is entirely contained in some $G[A_i]$.

Generalized coloring numbers:

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach_d[G, σ, v] guards short connections from v.

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach_d[G, σ, v] guards short connections from v.
- Main trick: Consider the σ -smallest vertex.

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach_d[G, σ, v] guards short connections from v.
- Main trick: Consider the σ -smallest vertex.

Low treedepth coverings:

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach_d[G, σ, v] guards short connections from v.
- Main trick: Consider the σ -smallest vertex.

Low treedepth coverings:

- Global decomposition into simple pieces.

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach_d[G, σ, v] guards short connections from v.
- Main trick: Consider the σ -smallest vertex.

Low treedepth coverings:

- **Global decomposition** into simple pieces.
- Provide a **reduction scheme**:

bnd treedepth \Rightarrow bnd expansion

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach_d[G, σ, v] guards short connections from v.
- Main trick: Consider the σ -smallest vertex.

Low treedepth coverings:

- **Global decomposition** into simple pieces.
- Provide a **reduction scheme**:

bnd treedepth \Rightarrow **bnd expansion**

These are main tools for **bounded expansion** classes.
Structural measures: summary

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach_d[G, σ, v] guards short connections from v.
- Main trick: Consider the σ -smallest vertex.

Low treedepth coverings:

- **Global decomposition** into simple pieces.
- Provide a **reduction scheme**:

bnd treedepth \Rightarrow bnd expansion

These are main tools for **bounded expansion** classes.

In nowhere dense classes they also work, but:

bounded by a constant \rightsquigarrow bounded by $\mathcal{O}(n^{\varepsilon})$ for any $\varepsilon > 0$

Structural measures: summary

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach_d[G, σ, v] guards short connections from v.
- Main trick: Consider the σ -smallest vertex.

Low treedepth coverings:

- **Global decomposition** into simple pieces.
- Provide a **reduction scheme**:

bnd treedepth \Rightarrow bnd expansion

These are main tools for **bounded expansion** classes.

In nowhere dense classes they also work, but:

bounded by a constant \rightsquigarrow bounded by $\mathcal{O}(n^{\varepsilon})$ for any $\varepsilon > 0$ Many arguments become much more technical or completely fail.

Structural measures: summary

Generalized coloring numbers:

- Generalizations of degeneracy to connections of bounded length.
- Intuition: WReach_d[G, σ, v] guards short connections from v.
- Main trick: Consider the σ -smallest vertex.

Low treedepth coverings:

- **Global decomposition** into simple pieces.
- Provide a **reduction scheme**:

bnd treedepth \Rightarrow bnd expansion

These are main tools for **bounded expansion** classes.

In **nowhere dense** classes they also work, but:

bounded by a constant \rightsquigarrow bounded by $\mathcal{O}(n^{\varepsilon})$ for any $\varepsilon > 0$ Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Part 4:

Uniform quasi-wideness and ladders

Int: In a **huge** sparse graph, there are **many** vertices that are pairwise **far** from each other.

Int: In a huge sparse graph, there are many vertices that are

pairwise **far** from each other.

Wrong: a star.

Int: In a huge sparse graph, there are many vertices that are

pairwise **far** from each other.

Wrong: a star.

Int: In a **huge** sparse graph, one can remove **few** vertices so that there are **many** vertices that are pairwise **far** from each other.

Int: In a **huge** sparse graph, one can remove **few** vertices so that there are **many** vertices that are pairwise **far** from each other.

Definition (Uniform quasi-wideness)

A class C is **uqw** if for every $d \in \mathbb{N}$ there exist $s_d \in \mathbb{N}$ and $N_d \colon \mathbb{N} \to \mathbb{N}$ s.t.

Int: In a **huge** sparse graph, one can remove **few** vertices so that there are **many** vertices that are pairwise **far** from each other.

Definition (Uniform quasi-wideness)

A class C is **uqw** if for every $d \in \mathbb{N}$ there exist $s_d \in \mathbb{N}$ and $N_d \colon \mathbb{N} \to \mathbb{N}$ s.t. for every $G \in C$, $m \in \mathbb{N}$, and $A \subseteq V(G)$ satisfying $|A| > N_d(m)$,

Int: In a **huge** sparse graph, one can remove **few** vertices so that there are **many** vertices that are pairwise **far** from each other.

Definition (Uniform quasi-wideness)

A class C is **uqw** if for every $d \in \mathbb{N}$ there exist $s_d \in \mathbb{N}$ and $N_d \colon \mathbb{N} \to \mathbb{N}$ s.t. for every $G \in C$, $m \in \mathbb{N}$, and $A \subseteq V(G)$ satisfying $|A| > N_d(m)$, there exists $S \subseteq V(G)$ and $B \subseteq A - S$ such that

Int: In a **huge** sparse graph, one can remove **few** vertices so that there are **many** vertices that are pairwise **far** from each other.

Definition (Uniform quasi-wideness)

A class C is **uqw** if for every $d \in \mathbb{N}$ there exist $s_d \in \mathbb{N}$ and $N_d \colon \mathbb{N} \to \mathbb{N}$ s.t. for every $G \in C$, $m \in \mathbb{N}$, and $A \subseteq V(G)$ satisfying $|A| > N_d(m)$, there exists $S \subseteq V(G)$ and $B \subseteq A - S$ such that $-|S| \leq s_d$; and

Int: In a huge sparse graph, one can remove few vertices so that

there are **many** vertices that are pairwise **far** from each other.

Definition (Uniform quasi-wideness)

A class C is **uqw** if for every $d \in \mathbb{N}$ there exist $s_d \in \mathbb{N}$ and $N_d \colon \mathbb{N} \to \mathbb{N}$ s.t. for every $G \in C$, $m \in \mathbb{N}$, and $A \subseteq V(G)$ satisfying $|A| > N_d(m)$, there exists $S \subseteq V(G)$ and $B \subseteq A - S$ such that

- $-|S| \leq s_d$; and
- |B| > m and $\operatorname{dist}_{G-S}(u, v) > d$ for all distinct $u, v \in B$.

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is **nowhere dense iff** it is **uniformly quasi-wide**.

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is **nowhere dense iff** it is **uniformly quasi-wide**.

Note: One can always have $N_d(m) = \text{poly}(m)$.

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is **nowhere dense iff** it is **uniformly quasi-wide**.

Note: One can always have $N_d(m) = \text{poly}(m)$.

Uniform quasi-wideness is a Ramseyan tool for digging structure.

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is **nowhere dense iff** it is **uniformly quasi-wide**.

Note: One can always have $N_d(m) = \text{poly}(m)$.

Uniform quasi-wideness is a Ramseyan tool for digging structure.

- Suppose in a graph *G* we have some **huge** complicated structure.

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is **nowhere dense iff** it is **uniformly quasi-wide**.

Note: One can always have $N_d(m) = \text{poly}(m)$.

Uniform quasi-wideness is a Ramseyan tool for digging structure.

- Suppose in a graph *G* we have some **huge** complicated structure.
- Hit it with **uqw** to get a **large** well-behaved structure.

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is **nowhere dense iff** it is **uniformly quasi-wide**.

Note: One can always have $N_d(m) = \text{poly}(m)$.

Uniform quasi-wideness is a Ramseyan tool for digging structure.

- Suppose in a graph *G* we have some **huge** complicated structure.
- Hit it with **uqw** to get a **large** well-behaved structure.

Now: Application to **distance**-*d* **domination**.

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is **nowhere dense iff** it is **uniformly quasi-wide**.

Note: One can always have $N_d(m) = \text{poly}(m)$.

Uniform quasi-wideness is a Ramseyan tool for digging structure.

- Suppose in a graph *G* we have some **huge** complicated structure.
- Hit it with **uqw** to get a **large** well-behaved structure.

Now: Application to **distance**-*d* **domination**.

– Let \mathcal{C} be nowhere dense and $d \in \mathbb{N}$ be fixed.

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is **nowhere dense iff** it is **uniformly quasi-wide**.

Note: One can always have $N_d(m) = \text{poly}(m)$.

Uniform quasi-wideness is a Ramseyan tool for digging structure.

- Suppose in a graph *G* we have some **huge** complicated structure.
- Hit it with **uqw** to get a **large** well-behaved structure.

Now: Application to **distance**-*d* **domination**.

- Let \mathcal{C} be nowhere dense and $d \in \mathbb{N}$ be fixed.
- Given $G \in \mathcal{C}$ and $k \in \mathbb{N}$, decide whether dom_d(G) $\leq k$.

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is **nowhere dense iff** it is **uniformly quasi-wide**.

Note: One can always have $N_d(m) = \text{poly}(m)$.

Uniform quasi-wideness is a Ramseyan tool for digging structure.

- Suppose in a graph *G* we have some **huge** complicated structure.
- Hit it with **uqw** to get a **large** well-behaved structure.

Now: Application to **distance**-*d* **domination**.

- Let \mathcal{C} be nowhere dense and $d \in \mathbb{N}$ be fixed.
- Given $G \in \mathcal{C}$ and $k \in \mathbb{N}$, decide whether dom_d(G) $\leq k$.
- **Trivial:** $\mathcal{O}(|V(G)|^k)$. We want something faster.

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is **nowhere dense iff** it is **uniformly quasi-wide**.

Note: One can always have $N_d(m) = \text{poly}(m)$.

Uniform quasi-wideness is a Ramseyan tool for digging structure.

- Suppose in a graph *G* we have some **huge** complicated structure.
- Hit it with **uqw** to get a **large** well-behaved structure.

Now: Application to **distance**-*d* **domination**.

- Let \mathcal{C} be nowhere dense and $d \in \mathbb{N}$ be fixed.
- Given $G \in \mathcal{C}$ and $k \in \mathbb{N}$, decide whether dom_d(G) $\leq k$.
- **Trivial:** $\mathcal{O}(|V(G)|^k)$. We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Round 1: Take any *k*-tuple of vertices *D*₁.

Round 1: Take any k-tuple of vertices D_1 . If D_1 is a dist-d domset, terminate.

Michał Pilipczuk Sparse graphs

$D_1 \bigcirc \bigcirc \bigcirc \bigcirc b_1$

Round 1: Take any *k*-tuple of vertices D_1 . If D_1 is a dist-*d* domset, terminate. Otherwise there is an undominated vertex b_1 .

Michał Pilipczuk

Sparse graphs

Round 2: Find any *k*-tuple of vertices D_2 that dist-*d* dominates b_1 .

Round 2: Find any *k*-tuple of vertices D_2 that dist-*d* dominates b_1 . If D_2 is a dist-*d* domset, terminate.

Round 2: Find any *k*-tuple of vertices D_2 that dist-*d* dominates b_1 .

If D_2 is a dist-*d* domset, terminate.

Otherwise there is an undominated vertex b_2 .

Michał Pilipczuk

Sparse graphs

Round 3: Find any *k*-tuple of vertices D_3 that dist-*d* dominates $\{b_1, b_2\}$.

Round *i*: Find any *k*-tuple of vertices D_i that dominates $\{b_1, \ldots, b_{i-1}\}$.

Round *i*: Find any *k*-tuple of vertices D_i that dominates $\{b_1, \ldots, b_{i-1}\}$. If there is none, answer **NO**.

Round *i*: Find any *k*-tuple of vertices D_i that dominates $\{b_1, \ldots, b_{i-1}\}$. If there is none, answer **NO**. If D_i is a dist-*d* domset, answer **YES**.

Round *i*: Find any *k*-tuple of vertices D_i that dominates $\{b_1, \ldots, b_{i-1}\}$. If there is none, answer **NO**. If D_i is a dist-*d* domset, answer **YES**. Otherwise there is an undominated vertex b_i . **Proceed**

Michał Pilipczuk

Sparse graphs
The *i*th iteration can be performed in time $f(k, i) \cdot ||G||$.

The *i*th iteration can be performed in time $f(k, i) \cdot ||G||$. Why the number of iterations should be bounded?

The *i*th iteration can be performed in time $f(k, i) \cdot ||G||$.

Why the number of iterations should be bounded?

Lemma

The Algorithm terminates after at most $c \cdot k^c$ rounds, where c is a constant that depends only on C and d.

The *i*th iteration can be performed in time $f(k, i) \cdot ||G||$. Why the number of iterations should be bounded?

Lemma

The Algorithm terminates after at most $c \cdot k^c$ rounds, where c is a constant that depends only on C and d.

Cor: A linear-time fixed-parameter algorithm.

The *i*th iteration can be performed in time $f(k, i) \cdot ||G||$. Why the number of iterations should be bounded?

Lemma

The Algorithm terminates after at most $c \cdot k^c$ rounds, where c is a constant that depends only on C and d.

Cor: A linear-time fixed-parameter algorithm.

- Running time $f(k) \cdot ||G||$, where f depends on C and d.

The *i*th iteration can be performed in time $f(k, i) \cdot ||G||$. Why the number of iterations should be bounded?

Lemma

The Algorithm terminates after at most $c \cdot k^c$ rounds, where c is a constant that depends only on C and d.

Cor: A linear-time fixed-parameter algorithm.

- Running time $f(k) \cdot ||G||$, where f depends on C and d.

Intuition:

The *i*th iteration can be performed in time $f(k, i) \cdot ||G||$. Why the number of iterations should be bounded?

Lemma

The Algorithm terminates after at most $c \cdot k^c$ rounds, where c is a constant that depends only on C and d.

Cor: A linear-time fixed-parameter algorithm.

- Running time $f(k) \cdot ||G||$, where f depends on C and d.

Intuition:

- The algorithms gradually gathers difficult witnesses.

The *i*th iteration can be performed in time $f(k, i) \cdot ||G||$. Why the number of iterations should be bounded?

Lemma

The Algorithm terminates after at most $c \cdot k^c$ rounds, where c is a constant that depends only on C and d.

Cor: A linear-time fixed-parameter algorithm.

- Running time $f(k) \cdot ||G||$, where f depends on C and d.

Intuition:

- The algorithms gradually gathers difficult witnesses.
- Eventually, domination of the witnesses forces domination of G.

The *i*th iteration can be performed in time $f(k, i) \cdot ||G||$. Why the number of iterations should be bounded?

Lemma

The Algorithm terminates after at most $c \cdot k^c$ rounds, where c is a constant that depends only on C and d.

Cor: A linear-time fixed-parameter algorithm.

- Running time $f(k) \cdot ||G||$, where f depends on C and d.

Intuition:

- The algorithms gradually gathers difficult witnesses.
- Eventually, domination of the witnesses forces domination of G.

Now: Proof of the **Lemma** for k = 1.

After ℓ rounds, the Algorithm has constructed a **semi-ladder** of order ℓ .

Michał Pilipczuk

After ℓ rounds, the Algorithm has constructed a **semi-ladder** of order ℓ . – Two sequences of vertices: a_1, \ldots, a_ℓ and b_1, \ldots, b_ℓ .

After ℓ rounds, the Algorithm has constructed a **semi-ladder** of order ℓ .

- Two sequences of vertices: a_1, \ldots, a_ℓ and b_1, \ldots, b_ℓ .
- For each *i*, we have $dist(a_i, b_i) > d$.

After ℓ rounds, the Algorithm has constructed a **semi-ladder** of order ℓ .

- Two sequences of vertices: a_1, \ldots, a_ℓ and b_1, \ldots, b_ℓ .
- For each *i*, we have $dist(a_i, b_i) > d$.
- For each j < i, we have dist $(a_i, b_j) \leq d$.

After ℓ rounds, the Algorithm has constructed a **semi-ladder** of order ℓ .

- Two sequences of vertices: a_1, \ldots, a_ℓ and b_1, \ldots, b_ℓ .
- For each *i*, we have $dist(a_i, b_i) > d$.
- For each j < i, we have dist $(a_i, b_j) \leq d$.

Suppose $\ell > N(2(d+1)^s)$, where $N(\cdot) = N_{2d}(\cdot)$ and $s \coloneqq s_{2d}$.

From **uqw** we get:

Michał Pilipczuk

From **uqw** we get:

- set *S* satisfying $|S| \leq s$; and

From **uqw** we get:

- set *S* satisfying $|S| \leq s$; and
- $-B \subseteq \{b_1,\ldots,b_\ell\}$ s.t. $|B| > 2(d+1)^s$ and $\operatorname{dist}_{G-S}(b_i,b_j) > 2d$ for $b_i,b_j \in B$.

From **uqw** we get:

- set *S* satisfying $|S| \leq s$; and - $B \subseteq \{b_1, \dots, b_\ell\}$ s.t. $|B| > 2(d+1)^s$ and $\operatorname{dist}_{G-S}(b_i, b_j) > 2d$ for $b_i, b_j \in B$. For $b_i \in B$, let $\pi_i \colon S \to \{1, \dots, d, \infty\}$ be its **distance**-*d* **profile** on *S*: $\pi_i(v) = \begin{cases} \operatorname{dist}(b_i, v) & \text{if } \leq d; \\ \infty & \text{otherwise.} \end{cases}$

Michał Pilipczuk S

From **uqw** we get:

- set *S* satisfying $|S| \leq s$; and - $B \subseteq \{b_1, \ldots, b_\ell\}$ s.t. $|B| > 2(d+1)^s$ and $\operatorname{dist}_{G-S}(b_i, b_j) > 2d$ for $b_i, b_j \in B$. For $b_i \in B$, let $\pi_i \colon S \to \{1, \ldots, d, \infty\}$ be its **distance**-*d* **profile** on *S*: $\int \operatorname{dist}(b_i, v) \quad \text{if } \leq d$:

$$\pi_i(v) = egin{cases} {
m dist}(b_i,v) & ext{ if } \leqslant d; \ \infty & ext{ otherwise.} \end{cases}$$

Only $(d + 1)^s$ possible profiles $\Rightarrow \exists b_x, b_y, b_z$ with same profile.

There are a_z -to- b_x and a_z -to- b_y paths of length $\leq d$.

There are a_z -to- b_x and a_z -to- b_y paths of length $\leq d$. One of them needs to intersect *S*, say the a_z -to- b_y path.

There are a_z -to- b_x and a_z -to- b_y paths of length $\leq d$. One of them needs to intersect *S*, say the a_z -to- b_y path.

 $\pi_y = \pi_z \qquad \Rightarrow \qquad$ Same distances to the intersection point.

There are a_z -to- b_x and a_z -to- b_y paths of length $\leq d$. One of them needs to intersect *S*, say the a_z -to- b_y path.

 $\pi_y = \pi_z \implies$ Same distances to the intersection point.

We conclude that $dist(a_z, b_z) \leq d$.

Contradiction.

There are a_z -to- b_x and a_z -to- b_y paths of length $\leq d$. One of them needs to intersect *S*, say the a_z -to- b_y path.

 $\pi_y = \pi_z \qquad \Rightarrow \qquad$ Same distances to the intersection point.

We conclude that $dist(a_z, b_z) \leq d$. **Contradiction**.

Cor: Maximum semi-ladder order is $\ell := N_{2d}(2(d+1)^{s_{2d}})$.

Claim

For k > 1, the number of rounds is $\langle k^{\ell+1}$, where ℓ is the bound for k = 1.

Michał Pilipczuk Sparse

Claim

For k > 1, the number of rounds is $\langle k^{\ell+1}$, where ℓ is the bound for k = 1.

Claim

For k > 1, the number of rounds is $\langle k^{\ell+1}$, where ℓ is the bound for k = 1.

$$- D_p$$
 dist-*d* dominates $\{b_1, \ldots, b_{p-1}\}$.

Claim

For k > 1, the number of rounds is $\langle k^{\ell+1}$, where ℓ is the bound for k = 1.

- $D_p \text{ dist-} d \text{ dominates } \{b_1, \ldots, b_{p-1}\}.$
- **Hence:** Some $a_p \in D_p$ dist-*d* dominates $\frac{1}{k}$ fraction of $\{b_1, \ldots, b_{p-1}\}$.

Claim

For k > 1, the number of rounds is $\langle k^{\ell+1}$, where ℓ is the bound for k = 1.

- $D_p \text{ dist-} d \text{ dominates } \{b_1, \ldots, b_{p-1}\}.$
- **Hence:** Some $a_p \in D_p$ dist-*d* dominates $\frac{1}{k}$ fraction of $\{b_1, \ldots, b_{p-1}\}$.
- Restrict attention to those $\ge k^{\ell}$ vertices and **continue**.

Claim

For k > 1, the number of rounds is $\langle k^{\ell+1}$, where ℓ is the bound for k = 1.

- $D_p \text{ dist-} d \text{ dominates } \{b_1, \ldots, b_{p-1}\}.$
- **Hence:** Some $a_p \in D_p$ dist-*d* dominates $\frac{1}{k}$ fraction of $\{b_1, \ldots, b_{p-1}\}$.
- Restrict attention to those $\ge k^{\ell}$ vertices and **continue**.

Claim

For k > 1, the number of rounds is $\langle k^{\ell+1}$, where ℓ is the bound for k = 1.

- $D_p \text{ dist-} d \text{ dominates } \{b_1, \ldots, b_{p-1}\}.$
- **Hence:** Some $a_p \in D_p$ dist-*d* dominates $\frac{1}{k}$ fraction of $\{b_1, \ldots, b_{p-1}\}$.
- Restrict attention to those $\ge k^{\ell}$ vertices and **continue**.

Claim

For k > 1, the number of rounds is $\langle k^{\ell+1}$, where ℓ is the bound for k = 1.

Suppose the Algorithm performs $p = k^{\ell+1}$ rounds.

- $D_p \text{ dist-} d \text{ dominates } \{b_1, \ldots, b_{p-1}\}.$
- **Hence:** Some $a_p \in D_p$ dist-*d* dominates $\frac{1}{k}$ fraction of $\{b_1, \ldots, b_{p-1}\}$.
- Restrict attention to those $\geq k^{\ell}$ vertices and **continue**.

 $\ell + 1$ rounds \rightsquigarrow a semi-ladder of order $\ell + 1$ **Contradiction.**

Ladders and stability

Ladders and stability

To define **semi-ladders**, we used predicate $\varphi(x, y) = \text{``dist}(x, y) \leq d$ ``.

Ladders and stability

To define **semi-ladders**, we used predicate $\varphi(x, y) = \text{``dist}(x, y) \leq d$ ``.

Idea: Replace distance checks with any first-order predicate.
Ladders and stability

To define **semi-ladders**, we used predicate $\varphi(x, y) = \text{``dist}(x, y) \leq d$ ``.

Idea: Replace distance checks with any first-order predicate.

Definition

Let *G* be a graph and $\varphi(x, y)$ be an FO formula.

A φ -ladder in G is a pair of sequences a_1, \ldots, a_ℓ and b_1, \ldots, b_ℓ such that $G \models \varphi(a_i, b_j) \quad \Leftrightarrow \quad i > j.$

Ladders and stability

To define **semi-ladders**, we used predicate $\varphi(x, y) = \text{``dist}(x, y) \leq d$ ``.

Idea: Replace distance checks with any first-order predicate.

Definition

Let *G* be a graph and $\varphi(x, y)$ be an FO formula.

A φ -ladder in G is a pair of sequences a_1, \ldots, a_ℓ and b_1, \ldots, b_ℓ such that $G \models \varphi(a_i, b_j) \quad \Leftrightarrow \quad i > j.$

 φ -ladder $\leftrightarrow \rightarrow$ linear order

Ladders and stability

To define **semi-ladders**, we used predicate $\varphi(x, y) = \text{``dist}(x, y) \leq d$ ``.

Idea: Replace distance checks with any first-order predicate.

Definition

Let *G* be a graph and $\varphi(x, y)$ be an FO formula.

A φ -ladder in G is a pair of sequences a_1, \ldots, a_ℓ and b_1, \ldots, b_ℓ such that $G \models \varphi(a_i, b_i) \quad \Leftrightarrow \quad i > j.$

 φ -ladder $\leftrightarrow \rightarrow$ linear order

Definition

A class C is **stable** if for every FO formula $\varphi(x, y)$, there is a **finite** upper bound on the orders of φ -ladders in graphs from C.

Theorem (Adler & Adler; Podewski & Ziegler)

Every **nowhere dense** class is **stable**.

Every subgraph-closed stable class is nowhere dense.

Theorem (Adler & Adler; Podewski & Ziegler) Every nowhere dense class is stable. Every subgraph-closed stable class is nowhere dense.

There are many more **stable** classes than **nowhere dense**:

Theorem (Adler & Adler; Podewski & Ziegler) Every nowhere dense class is stable. Every subgraph-closed stable class is nowhere dense.

There are many more **stable** classes than **nowhere dense**:

- For an FO formula $\varphi(x, y)$ and graph *G*, we define:

 $G^{\varphi} := (V(G), \{uv : G \models \varphi(u, v)\}).$

Theorem (Adler & Adler; Podewski & Ziegler) Every nowhere dense class is stable. Every subgraph-closed stable class is nowhere dense.

There are many more **stable** classes than **nowhere dense**:

- For an FO formula $\varphi(x, y)$ and graph *G*, we define:

 $G^{\varphi} := (V(G), \{uv : G \models \varphi(u, v)\}).$

- Ex: graph powers, complementation,...

Theorem (Adler & Adler; Podewski & Ziegler) Every nowhere dense class is stable. Every subgraph-closed stable class is nowhere dense.

There are many more **stable** classes than **nowhere dense**:

- For an FO formula $\varphi(x, y)$ and graph *G*, we define:

 $G^{\varphi} := (V(G), \{uv : G \models \varphi(u, v)\}).$

- Ex: graph powers, complementation,...
- For a class \mathcal{C} , we define:

$$\mathcal{C}^{\varphi} \coloneqq \{ G^{\varphi} : G \in \mathcal{C} \}.$$

Theorem (Adler & Adler; Podewski & Ziegler) Every nowhere dense class is stable. Every subgraph-closed stable class is nowhere dense.

There are many more **stable** classes than **nowhere dense**:

- For an FO formula $\varphi(x, y)$ and graph *G*, we define:

 $G^{\varphi} \coloneqq (V(G), \{uv \colon G \models \varphi(u, v)\}).$

- Ex: graph powers, complementation,...
- For a class \mathcal{C} , we define:

$$\mathcal{C}^{\varphi} \coloneqq \{ G^{\varphi} : G \in \mathcal{C} \}.$$

- If C is **nowhere dense**, then C^{φ} is called **structurally nowhere dense**.

Theorem (Adler & Adler; Podewski & Ziegler) Every nowhere dense class is stable. Every subgraph-closed stable class is nowhere dense.

There are many more **stable** classes than **nowhere dense**:

- For an FO formula $\varphi(x, y)$ and graph *G*, we define:

 $G^{\varphi} \coloneqq (V(G), \{uv \colon G \models \varphi(u, v)\}).$

- Ex: graph powers, complementation,...
- For a class \mathcal{C} , we define:

$$\mathcal{C}^{\varphi} \coloneqq \{ G^{\varphi} : G \in \mathcal{C} \}.$$

- If C is **nowhere dense**, then C^{φ} is called **structurally nowhere dense**.

Fact. Structurally nowhere dense \Rightarrow **Stable**

Theorem (Adler & Adler; Podewski & Ziegler) Every nowhere dense class is stable. Every subgraph-closed stable class is nowhere dense.

There are many more **stable** classes than **nowhere dense**:

- For an FO formula $\varphi(x, y)$ and graph *G*, we define:

 $G^{\varphi} \coloneqq (V(G), \{uv \colon G \models \varphi(u, v)\}).$

- Ex: graph powers, complementation,...
- For a class \mathcal{C} , we define:

$$\mathcal{C}^{\varphi} \coloneqq \{ G^{\varphi} : G \in \mathcal{C} \}.$$

- If C is **nowhere dense**, then C^{φ} is called **structurally nowhere dense**.

Fact. Structurally nowhere dense \Rightarrow **Stable**

Goal: A **theory** of **well-structured dense graphs**.

Monograph Sparsity of Nešetřil and Ossona de Mendez

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

- Hopefully, one day they will be turned into a book.

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

- Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2
Hopefully, one day they will be turned into a book.
Video recordings of the lectures (link on the website).

Introduction through **exercises** for:

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.p1/~mp248287/sparsity2
— Hopefully, one day they will be turned into a book.
Video recordings of the lectures (link on the website).

Introduction through **exercises** for:

– PhD students of ALGOMANET:

https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2
Hopefully, one day they will be turned into a book.
Video recordings of the lectures (link on the website).

Introduction through **exercises** for:

– PhD students of ALGOMANET:

https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html

- high school students at *Math Beyond Limits 2019*:

https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2
Hopefully, one day they will be turned into a book.
Video recordings of the lectures (link on the website).

Introduction through **exercises** for:

– PhD students of ALGOMANET:

 $\tt https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html$

- high school students at *Math Beyond Limits 2019*:

https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Thank you for the attention!

