
Sparsity

tutorial at PCC’20

Michał Pilipczuk

Faculty of Mathematics, Informatics, and Mechanics

University of Warsaw

September 17
th

, 2020

Organization

Rough plan:

9:15 – 10:00 Introduction

10:15 – 11:00 Generalized coloring numbers

11:15 – 12:00 Treedepth and low treedepth colorings

12:15 – 13:00 Uniform quasi-wideness and ladders

Format:

− Lecture interleaved with short exercises. Be active!

− Understanding checks by writing +1 in the chat.

Michał Pilipczuk Sparse graphs 1 / 41

Organization

Rough plan:

9:15 – 10:00 Introduction

10:15 – 11:00 Generalized coloring numbers

11:15 – 12:00 Treedepth and low treedepth colorings

12:15 – 13:00 Uniform quasi-wideness and ladders

Format:

− Lecture interleaved with short exercises. Be active!

− Understanding checks by writing +1 in the chat.

Michał Pilipczuk Sparse graphs 1 / 41

Organization

Rough plan:

9:15 – 10:00 Introduction

10:15 – 11:00 Generalized coloring numbers

11:15 – 12:00 Treedepth and low treedepth colorings

12:15 – 13:00 Uniform quasi-wideness and ladders

Format:

− Lecture interleaved with short exercises. Be active!

− Understanding checks by writing +1 in the chat.

Michał Pilipczuk Sparse graphs 1 / 41

Sparsity

Graphs in applications are o�en sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

2. elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all of the above.

Michał Pilipczuk Sparse graphs 2 / 41

Sparsity

Graphs in applications are o�en sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

2. elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all of the above.

Michał Pilipczuk Sparse graphs 2 / 41

Sparsity

Graphs in applications are o�en sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

2. elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all of the above.

Michał Pilipczuk Sparse graphs 2 / 41

Sparsity

Graphs in applications are o�en sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

2. elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all of the above.

Michał Pilipczuk Sparse graphs 2 / 41

Sparsity

Graphs in applications are o�en sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

2. elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all of the above.

Michał Pilipczuk Sparse graphs 2 / 41

Sparsity

Graphs in applications are o�en sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

2. elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all of the above.

Michał Pilipczuk Sparse graphs 2 / 41

Sparsity

Graphs in applications are o�en sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

2. elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all of the above.

Michał Pilipczuk Sparse graphs 2 / 41

Sparsity

Graphs in applications are o�en sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

2. elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all of the above.

Michał Pilipczuk Sparse graphs 2 / 41

Sparsity

Graphs in applications are o�en sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

2. elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all of the above.

Michał Pilipczuk Sparse graphs 2 / 41

Sparsity

Graphs in applications are o�en sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

2. elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all of the above.

Michał Pilipczuk Sparse graphs 2 / 41

Sparsity

Graphs in applications are o�en sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

2. elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all of the above.

Michał Pilipczuk Sparse graphs 2 / 41

Sparsity

Graphs in applications are o�en sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

2. elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all of the above.

Michał Pilipczuk Sparse graphs 2 / 41

Sparsity

Graphs in applications are o�en sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

2. elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all of the above.

Michał Pilipczuk Sparse graphs 2 / 41

Measuring sparsity

Q: What does it mean that a graph is sparse?

A�empt 1. A graph G is sparse if it has a linear number of edges.

− Formally, |E(G)| 6 c · |V (G)| for some constant c.

avgdeg(G) =

∑
u∈V (G) deg(u)

|V (G)|
=

2|E(G)|
|V (G)|

− Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree 6 d ⇒ Average degree 6 d .

Ex 2. Planar graph has 6 3n− 6 edges ⇒ Average degree < 6.

Issue: A complete graph on k vertices plus k2
isolated vertices.

− Average degree smaller than 1.

− Contains a dense subgraph.

Michał Pilipczuk Sparse graphs 3 / 41

Measuring sparsity

Q: What does it mean that a graph is sparse?

A�empt 1. A graph G is sparse if it has a linear number of edges.

− Formally, |E(G)| 6 c · |V (G)| for some constant c.

avgdeg(G) =

∑
u∈V (G) deg(u)

|V (G)|
=

2|E(G)|
|V (G)|

− Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree 6 d ⇒ Average degree 6 d .

Ex 2. Planar graph has 6 3n− 6 edges ⇒ Average degree < 6.

Issue: A complete graph on k vertices plus k2
isolated vertices.

− Average degree smaller than 1.

− Contains a dense subgraph.

Michał Pilipczuk Sparse graphs 3 / 41

Measuring sparsity

Q: What does it mean that a graph is sparse?

A�empt 1. A graph G is sparse if it has a linear number of edges.

− Formally, |E(G)| 6 c · |V (G)| for some constant c.

avgdeg(G) =

∑
u∈V (G) deg(u)

|V (G)|
=

2|E(G)|
|V (G)|

− Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree 6 d ⇒ Average degree 6 d .

Ex 2. Planar graph has 6 3n− 6 edges ⇒ Average degree < 6.

Issue: A complete graph on k vertices plus k2
isolated vertices.

− Average degree smaller than 1.

− Contains a dense subgraph.

Michał Pilipczuk Sparse graphs 3 / 41

Measuring sparsity

Q: What does it mean that a graph is sparse?

A�empt 1. A graph G is sparse if it has a linear number of edges.

− Formally, |E(G)| 6 c · |V (G)| for some constant c.

avgdeg(G) =

∑
u∈V (G) deg(u)

|V (G)|
=

2|E(G)|
|V (G)|

− Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree 6 d ⇒ Average degree 6 d .

Ex 2. Planar graph has 6 3n− 6 edges ⇒ Average degree < 6.

Issue: A complete graph on k vertices plus k2
isolated vertices.

− Average degree smaller than 1.

− Contains a dense subgraph.

Michał Pilipczuk Sparse graphs 3 / 41

Measuring sparsity

Q: What does it mean that a graph is sparse?

A�empt 1. A graph G is sparse if it has a linear number of edges.

− Formally, |E(G)| 6 c · |V (G)| for some constant c.

avgdeg(G) =

∑
u∈V (G) deg(u)

|V (G)|
=

2|E(G)|
|V (G)|

− Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree 6 d ⇒ Average degree 6 d .

Ex 2. Planar graph has 6 3n− 6 edges ⇒ Average degree < 6.

Issue: A complete graph on k vertices plus k2
isolated vertices.

− Average degree smaller than 1.

− Contains a dense subgraph.

Michał Pilipczuk Sparse graphs 3 / 41

Measuring sparsity

Q: What does it mean that a graph is sparse?

A�empt 1. A graph G is sparse if it has a linear number of edges.

− Formally, |E(G)| 6 c · |V (G)| for some constant c.

avgdeg(G) =

∑
u∈V (G) deg(u)

|V (G)|
=

2|E(G)|
|V (G)|

− Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree 6 d ⇒ Average degree 6 d .

Ex 2. Planar graph has 6 3n− 6 edges ⇒ Average degree < 6.

Issue: A complete graph on k vertices plus k2
isolated vertices.

− Average degree smaller than 1.

− Contains a dense subgraph.

Michał Pilipczuk Sparse graphs 3 / 41

Measuring sparsity

Q: What does it mean that a graph is sparse?

A�empt 1. A graph G is sparse if it has a linear number of edges.

− Formally, |E(G)| 6 c · |V (G)| for some constant c.

avgdeg(G) =

∑
u∈V (G) deg(u)

|V (G)|
=

2|E(G)|
|V (G)|

− Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree 6 d ⇒ Average degree 6 d .

Ex 2. Planar graph has 6 3n− 6 edges ⇒ Average degree < 6.

Issue: A complete graph on k vertices plus k2
isolated vertices.

− Average degree smaller than 1.

− Contains a dense subgraph.

Michał Pilipczuk Sparse graphs 3 / 41

Measuring sparsity

Q: What does it mean that a graph is sparse?

A�empt 1. A graph G is sparse if it has a linear number of edges.

− Formally, |E(G)| 6 c · |V (G)| for some constant c.

avgdeg(G) =

∑
u∈V (G) deg(u)

|V (G)|
=

2|E(G)|
|V (G)|

− Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree 6 d ⇒ Average degree 6 d .

Ex 2. Planar graph has 6 3n− 6 edges ⇒ Average degree < 6.

Issue: A complete graph on k vertices plus k2
isolated vertices.

− Average degree smaller than 1.

− Contains a dense subgraph.

Michał Pilipczuk Sparse graphs 3 / 41

Measuring sparsity

Q: What does it mean that a graph is sparse?

A�empt 1. A graph G is sparse if it has a linear number of edges.

− Formally, |E(G)| 6 c · |V (G)| for some constant c.

avgdeg(G) =

∑
u∈V (G) deg(u)

|V (G)|
=

2|E(G)|
|V (G)|

− Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree 6 d ⇒ Average degree 6 d .

Ex 2. Planar graph has 6 3n− 6 edges ⇒ Average degree < 6.

Issue: A complete graph on k vertices plus k2
isolated vertices.

− Average degree smaller than 1.

− Contains a dense subgraph.

Michał Pilipczuk Sparse graphs 3 / 41

Measuring sparsity

Q: What does it mean that a graph is sparse?

A�empt 1. A graph G is sparse if it has a linear number of edges.

− Formally, |E(G)| 6 c · |V (G)| for some constant c.

avgdeg(G) =

∑
u∈V (G) deg(u)

|V (G)|
=

2|E(G)|
|V (G)|

− Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree 6 d ⇒ Average degree 6 d .

Ex 2. Planar graph has 6 3n− 6 edges ⇒ Average degree < 6.

Issue: A complete graph on k vertices plus k2
isolated vertices.

− Average degree smaller than 1.

− Contains a dense subgraph.

Michał Pilipczuk Sparse graphs 3 / 41

Measuring sparsity

Q: What does it mean that a graph is sparse?

A�empt 1. A graph G is sparse if it has a linear number of edges.

− Formally, |E(G)| 6 c · |V (G)| for some constant c.

avgdeg(G) =

∑
u∈V (G) deg(u)

|V (G)|
=

2|E(G)|
|V (G)|

− Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree 6 d ⇒ Average degree 6 d .

Ex 2. Planar graph has 6 3n− 6 edges ⇒ Average degree < 6.

Issue: A complete graph on k vertices plus k2
isolated vertices.

− Average degree smaller than 1.

− Contains a dense subgraph.

Michał Pilipczuk Sparse graphs 3 / 41

Measuring sparsity

A�empt 2. Every subgraph of G has a linear number of edges.

−We define maximum average degree of G as

mad(G) := max
H⊆G

avgdeg(H).

− G is sparse if mad(G) 6 c for some constant c.

Ex 1. G has maximum degree 6 d ⇒ mad(G) 6 d .

Ex 2. G is planar ⇒ mad(G) < 6.

Issue: A subdivided complete graph.

− Every subgraph has avgdeg 6 4.

− Is this graph really sparse?

Michał Pilipczuk Sparse graphs 4 / 41

Measuring sparsity

A�empt 2. Every subgraph of G has a linear number of edges.

−We define maximum average degree of G as

mad(G) := max
H⊆G

avgdeg(H).

− G is sparse if mad(G) 6 c for some constant c.

Ex 1. G has maximum degree 6 d ⇒ mad(G) 6 d .

Ex 2. G is planar ⇒ mad(G) < 6.

Issue: A subdivided complete graph.

− Every subgraph has avgdeg 6 4.

− Is this graph really sparse?

Michał Pilipczuk Sparse graphs 4 / 41

Measuring sparsity

A�empt 2. Every subgraph of G has a linear number of edges.

−We define maximum average degree of G as

mad(G) := max
H⊆G

avgdeg(H).

− G is sparse if mad(G) 6 c for some constant c.

Ex 1. G has maximum degree 6 d ⇒ mad(G) 6 d .

Ex 2. G is planar ⇒ mad(G) < 6.

Issue: A subdivided complete graph.

− Every subgraph has avgdeg 6 4.

− Is this graph really sparse?

Michał Pilipczuk Sparse graphs 4 / 41

Measuring sparsity

A�empt 2. Every subgraph of G has a linear number of edges.

−We define maximum average degree of G as

mad(G) := max
H⊆G

avgdeg(H).

− G is sparse if mad(G) 6 c for some constant c.

Ex 1. G has maximum degree 6 d ⇒ mad(G) 6 d .

Ex 2. G is planar ⇒ mad(G) < 6.

Issue: A subdivided complete graph.

− Every subgraph has avgdeg 6 4.

− Is this graph really sparse?

Michał Pilipczuk Sparse graphs 4 / 41

Measuring sparsity

A�empt 2. Every subgraph of G has a linear number of edges.

−We define maximum average degree of G as

mad(G) := max
H⊆G

avgdeg(H).

− G is sparse if mad(G) 6 c for some constant c.

Ex 1. G has maximum degree 6 d ⇒ mad(G) 6 d .

Ex 2. G is planar ⇒ mad(G) < 6.

Issue: A subdivided complete graph.

− Every subgraph has avgdeg 6 4.

− Is this graph really sparse?

Michał Pilipczuk Sparse graphs 4 / 41

Measuring sparsity

A�empt 2. Every subgraph of G has a linear number of edges.

−We define maximum average degree of G as

mad(G) := max
H⊆G

avgdeg(H).

− G is sparse if mad(G) 6 c for some constant c.

Ex 1. G has maximum degree 6 d ⇒ mad(G) 6 d .

Ex 2. G is planar ⇒ mad(G) < 6.

Issue: A subdivided complete graph.

− Every subgraph has avgdeg 6 4.

− Is this graph really sparse?

Michał Pilipczuk Sparse graphs 4 / 41

Measuring sparsity

A�empt 2. Every subgraph of G has a linear number of edges.

−We define maximum average degree of G as

mad(G) := max
H⊆G

avgdeg(H).

− G is sparse if mad(G) 6 c for some constant c.

Ex 1. G has maximum degree 6 d ⇒ mad(G) 6 d .

Ex 2. G is planar ⇒ mad(G) < 6.

Issue: A subdivided complete graph.

− Every subgraph has avgdeg 6 4.

− Is this graph really sparse?

Michał Pilipczuk Sparse graphs 4 / 41

Measuring sparsity

A�empt 2. Every subgraph of G has a linear number of edges.

−We define maximum average degree of G as

mad(G) := max
H⊆G

avgdeg(H).

− G is sparse if mad(G) 6 c for some constant c.

Ex 1. G has maximum degree 6 d ⇒ mad(G) 6 d .

Ex 2. G is planar ⇒ mad(G) < 6.

Issue: A subdivided complete graph.

− Every subgraph has avgdeg 6 4.

− Is this graph really sparse?

Michał Pilipczuk Sparse graphs 4 / 41

Measuring sparsity

A�empt 2. Every subgraph of G has a linear number of edges.

−We define maximum average degree of G as

mad(G) := max
H⊆G

avgdeg(H).

− G is sparse if mad(G) 6 c for some constant c.

Ex 1. G has maximum degree 6 d ⇒ mad(G) 6 d .

Ex 2. G is planar ⇒ mad(G) < 6.

Issue: A subdivided complete graph.

− Every subgraph has avgdeg 6 4.

− Is this graph really sparse?

Michał Pilipczuk Sparse graphs 4 / 41

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

−We can construct a theory around the parameter mad(·).
− mad(·) is essentially equivalent to arboricity and degeneracy.

− These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is dense.

− Reason: It contains a dense substructure visible at “depth” 1.

− Need: A notion of embedding that would capture this.

Michał Pilipczuk Sparse graphs 5 / 41

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

−We can construct a theory around the parameter mad(·).
− mad(·) is essentially equivalent to arboricity and degeneracy.

− These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is dense.

− Reason: It contains a dense substructure visible at “depth” 1.

− Need: A notion of embedding that would capture this.

Michał Pilipczuk Sparse graphs 5 / 41

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

−We can construct a theory around the parameter mad(·).

− mad(·) is essentially equivalent to arboricity and degeneracy.

− These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is dense.

− Reason: It contains a dense substructure visible at “depth” 1.

− Need: A notion of embedding that would capture this.

Michał Pilipczuk Sparse graphs 5 / 41

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

−We can construct a theory around the parameter mad(·).
− mad(·) is essentially equivalent to arboricity and degeneracy.

− These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is dense.

− Reason: It contains a dense substructure visible at “depth” 1.

− Need: A notion of embedding that would capture this.

Michał Pilipczuk Sparse graphs 5 / 41

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

−We can construct a theory around the parameter mad(·).
− mad(·) is essentially equivalent to arboricity and degeneracy.

− These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is dense.

− Reason: It contains a dense substructure visible at “depth” 1.

− Need: A notion of embedding that would capture this.

Michał Pilipczuk Sparse graphs 5 / 41

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

−We can construct a theory around the parameter mad(·).
− mad(·) is essentially equivalent to arboricity and degeneracy.

− These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is dense.

− Reason: It contains a dense substructure visible at “depth” 1.

− Need: A notion of embedding that would capture this.

Michał Pilipczuk Sparse graphs 5 / 41

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

−We can construct a theory around the parameter mad(·).
− mad(·) is essentially equivalent to arboricity and degeneracy.

− These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is dense.

− Reason: It contains a dense substructure visible at “depth” 1.

− Need: A notion of embedding that would capture this.

Michał Pilipczuk Sparse graphs 5 / 41

Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

−We can construct a theory around the parameter mad(·).
− mad(·) is essentially equivalent to arboricity and degeneracy.

− These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is dense.

− Reason: It contains a dense substructure visible at “depth” 1.

− Need: A notion of embedding that would capture this.

Michał Pilipczuk Sparse graphs 5 / 41

Minor order

Definition

H is a minor of G ⇔
H is obtained from a subgraph of G by contracting connected subgraphs

HG

Theorem (Kuratowski; Wagner)

Planar graphs are exactly {K5,K3,3}-minor-free graphs.

Theorem (Robertson and Seymour)

For every t ∈ N, every Kt-minor-free graph looks like this:

figure by Felix Reidl

Michał Pilipczuk Sparse graphs 6 / 41

Minor order

Definition

H is a minor of G ⇔
H is obtained from a subgraph of G by contracting connected subgraphs

HG

Theorem (Kuratowski; Wagner)

Planar graphs are exactly {K5,K3,3}-minor-free graphs.

Theorem (Robertson and Seymour)

For every t ∈ N, every Kt-minor-free graph looks like this:

figure by Felix Reidl

Michał Pilipczuk Sparse graphs 6 / 41

Minor order

Definition

H is a minor of G ⇔
H is obtained from a subgraph of G by contracting connected subgraphs

HG

Theorem (Kuratowski; Wagner)

Planar graphs are exactly {K5,K3,3}-minor-free graphs.

Theorem (Robertson and Seymour)

For every t ∈ N, every Kt-minor-free graph looks like this:

figure by Felix Reidl

Michał Pilipczuk Sparse graphs 6 / 41

Minor order

Definition

H is a minor of G ⇔
H is obtained from a subgraph of G by contracting connected subgraphs

HG

Theorem (Kuratowski; Wagner)

Planar graphs are exactly {K5,K3,3}-minor-free graphs.

Theorem (Robertson and Seymour)

For every t ∈ N, every Kt-minor-free graph looks like this:

figure by Felix Reidl

Michał Pilipczuk Sparse graphs 6 / 41

Shallow minors

A�empt 3. Graphs excluding Kt as a minor, for some t ∈ N.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Ergo: Excluding minors leads to an interesting theory,

but this is not the theory we are a�er.

Idea: Think about local minors.

Definition

H is a depth-d minor of G ⇔
H is obtained from a subgraph of G by contracting subgraphs of radius 6 d

HG

depth-0 minors = subgraphs

Michał Pilipczuk Sparse graphs 7 / 41

Shallow minors

A�empt 3. Graphs excluding Kt as a minor, for some t ∈ N.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Ergo: Excluding minors leads to an interesting theory,

but this is not the theory we are a�er.

Idea: Think about local minors.

Definition

H is a depth-d minor of G ⇔
H is obtained from a subgraph of G by contracting subgraphs of radius 6 d

HG

depth-0 minors = subgraphs

Michał Pilipczuk Sparse graphs 7 / 41

Shallow minors

A�empt 3. Graphs excluding Kt as a minor, for some t ∈ N.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Ergo: Excluding minors leads to an interesting theory,

but this is not the theory we are a�er.

Idea: Think about local minors.

Definition

H is a depth-d minor of G ⇔
H is obtained from a subgraph of G by contracting subgraphs of radius 6 d

HG

depth-0 minors = subgraphs

Michał Pilipczuk Sparse graphs 7 / 41

Shallow minors

A�empt 3. Graphs excluding Kt as a minor, for some t ∈ N.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Ergo: Excluding minors leads to an interesting theory,

but this is not the theory we are a�er.

Idea: Think about local minors.

Definition

H is a depth-d minor of G ⇔
H is obtained from a subgraph of G by contracting subgraphs of radius 6 d

HG

depth-0 minors = subgraphs

Michał Pilipczuk Sparse graphs 7 / 41

Shallow minors

A�empt 3. Graphs excluding Kt as a minor, for some t ∈ N.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Ergo: Excluding minors leads to an interesting theory,

but this is not the theory we are a�er.

Idea: Think about local minors.

Definition

H is a depth-d minor of G ⇔
H is obtained from a subgraph of G by contracting subgraphs of radius 6 d

HG

depth-0 minors = subgraphs

Michał Pilipczuk Sparse graphs 7 / 41

Shallow minors

A�empt 3. Graphs excluding Kt as a minor, for some t ∈ N.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Ergo: Excluding minors leads to an interesting theory,

but this is not the theory we are a�er.

Idea: Think about local minors.

Definition

H is a depth-d minor of G ⇔
H is obtained from a subgraph of G by contracting subgraphs of radius 6 d

HG

depth-0 minors = subgraphs

Michał Pilipczuk Sparse graphs 7 / 41

Shallow minors

A�empt 3. Graphs excluding Kt as a minor, for some t ∈ N.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Ergo: Excluding minors leads to an interesting theory,

but this is not the theory we are a�er.

Idea: Think about local minors.

Definition

H is a depth-d minor of G ⇔
H is obtained from a subgraph of G by contracting subgraphs of radius 6 d

HG

depth-0 minors =

subgraphs

Michał Pilipczuk Sparse graphs 7 / 41

Shallow minors

A�empt 3. Graphs excluding Kt as a minor, for some t ∈ N.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Ergo: Excluding minors leads to an interesting theory,

but this is not the theory we are a�er.

Idea: Think about local minors.

Definition

H is a depth-d minor of G ⇔
H is obtained from a subgraph of G by contracting subgraphs of radius 6 d

HG

depth-0 minors = subgraphs

Michał Pilipczuk Sparse graphs 7 / 41

Notions of sparsity

Intuition: Sparsity⇔ Exclusion of dense structures at every fixed depth

Definition

∇d(G) := sup { avgdeg(H) : H is a depth-d minor of G }
ωd(G) := sup { t : Kt is a depth-d minor of G }.

Note: depth-0 minors = subgraphs ∇0(G) = ?mad(G).

For a class of graphs C, we write:

∇d(C) := sup
G∈C
∇d(G) and ωd(C) := sup

G∈C
ωd(G).

Definition

C has bounded expansion if∇d(C) is finite for all d ∈ N.

C is nowhere dense if ωd(C) is finite for all d ∈ N.

Michał Pilipczuk Sparse graphs 8 / 41

Notions of sparsity

Intuition: Sparsity⇔ Exclusion of dense structures at every fixed depth

Definition

∇d(G) := sup { avgdeg(H) : H is a depth-d minor of G }
ωd(G) := sup { t : Kt is a depth-d minor of G }.

Note: depth-0 minors = subgraphs ∇0(G) = ?mad(G).

For a class of graphs C, we write:

∇d(C) := sup
G∈C
∇d(G) and ωd(C) := sup

G∈C
ωd(G).

Definition

C has bounded expansion if∇d(C) is finite for all d ∈ N.

C is nowhere dense if ωd(C) is finite for all d ∈ N.

Michał Pilipczuk Sparse graphs 8 / 41

Notions of sparsity

Intuition: Sparsity⇔ Exclusion of dense structures at every fixed depth

Definition

∇d(G) := sup { avgdeg(H) : H is a depth-d minor of G }
ωd(G) := sup { t : Kt is a depth-d minor of G }.

Note: depth-0 minors = subgraphs ∇0(G) = ?mad(G).

For a class of graphs C, we write:

∇d(C) := sup
G∈C
∇d(G) and ωd(C) := sup

G∈C
ωd(G).

Definition

C has bounded expansion if∇d(C) is finite for all d ∈ N.

C is nowhere dense if ωd(C) is finite for all d ∈ N.

Michał Pilipczuk Sparse graphs 8 / 41

Notions of sparsity

Intuition: Sparsity⇔ Exclusion of dense structures at every fixed depth

Definition

∇d(G) := sup { avgdeg(H) : H is a depth-d minor of G }
ωd(G) := sup { t : Kt is a depth-d minor of G }.

Note: depth-0 minors = subgraphs ∇0(G) = ?

mad(G).

For a class of graphs C, we write:

∇d(C) := sup
G∈C
∇d(G) and ωd(C) := sup

G∈C
ωd(G).

Definition

C has bounded expansion if∇d(C) is finite for all d ∈ N.

C is nowhere dense if ωd(C) is finite for all d ∈ N.

Michał Pilipczuk Sparse graphs 8 / 41

Notions of sparsity

Intuition: Sparsity⇔ Exclusion of dense structures at every fixed depth

Definition

∇d(G) := sup { avgdeg(H) : H is a depth-d minor of G }
ωd(G) := sup { t : Kt is a depth-d minor of G }.

Note: depth-0 minors = subgraphs ∇0(G) =

?

mad(G).

For a class of graphs C, we write:

∇d(C) := sup
G∈C
∇d(G) and ωd(C) := sup

G∈C
ωd(G).

Definition

C has bounded expansion if∇d(C) is finite for all d ∈ N.

C is nowhere dense if ωd(C) is finite for all d ∈ N.

Michał Pilipczuk Sparse graphs 8 / 41

Notions of sparsity

Intuition: Sparsity⇔ Exclusion of dense structures at every fixed depth

Definition

∇d(G) := sup { avgdeg(H) : H is a depth-d minor of G }
ωd(G) := sup { t : Kt is a depth-d minor of G }.

Note: depth-0 minors = subgraphs ∇0(G) =

?

mad(G).

For a class of graphs C, we write:

∇d(C) := sup
G∈C
∇d(G) and ωd(C) := sup

G∈C
ωd(G).

Definition

C has bounded expansion if∇d(C) is finite for all d ∈ N.

C is nowhere dense if ωd(C) is finite for all d ∈ N.

Michał Pilipczuk Sparse graphs 8 / 41

Notions of sparsity

Intuition: Sparsity⇔ Exclusion of dense structures at every fixed depth

Definition

∇d(G) := sup { avgdeg(H) : H is a depth-d minor of G }
ωd(G) := sup { t : Kt is a depth-d minor of G }.

Note: depth-0 minors = subgraphs ∇0(G) =

?

mad(G).

For a class of graphs C, we write:

∇d(C) := sup
G∈C
∇d(G) and ωd(C) := sup

G∈C
ωd(G).

Definition

C has bounded expansion if∇d(C) is finite for all d ∈ N.

C is nowhere dense if ωd(C) is finite for all d ∈ N.

Michał Pilipczuk Sparse graphs 8 / 41

Notions of sparsity

Equivalently:

C has bounded expansion if for every d ∈ N there is c(d) ∈ N s.t.

avgdeg(H) 6 c(d) whenever H is a depth-d minor of some G ∈ C.

C is nowhere dense if for every d ∈ N there is t(d) ∈ N s.t.

Kt(d) is not a depth-d minor of any G ∈ C.

Key idea: Sparsity is a property of a class of graphs.

− It is a limit property of graphs from the class.

− Can be formalized using standard limit constructions (P, Toruńczyk).

− Classes of graphs as basic objects of interest.

Michał Pilipczuk Sparse graphs 9 / 41

Notions of sparsity

Equivalently:

C has bounded expansion if for every d ∈ N there is c(d) ∈ N s.t.

avgdeg(H) 6 c(d) whenever H is a depth-d minor of some G ∈ C.

C is nowhere dense if for every d ∈ N there is t(d) ∈ N s.t.

Kt(d) is not a depth-d minor of any G ∈ C.

Key idea: Sparsity is a property of a class of graphs.

− It is a limit property of graphs from the class.

− Can be formalized using standard limit constructions (P, Toruńczyk).

− Classes of graphs as basic objects of interest.

Michał Pilipczuk Sparse graphs 9 / 41

Notions of sparsity

Equivalently:

C has bounded expansion if for every d ∈ N there is c(d) ∈ N s.t.

avgdeg(H) 6 c(d) whenever H is a depth-d minor of some G ∈ C.

C is nowhere dense if for every d ∈ N there is t(d) ∈ N s.t.

Kt(d) is not a depth-d minor of any G ∈ C.

Key idea: Sparsity is a property of a class of graphs.

− It is a limit property of graphs from the class.

− Can be formalized using standard limit constructions (P, Toruńczyk).

− Classes of graphs as basic objects of interest.

Michał Pilipczuk Sparse graphs 9 / 41

Notions of sparsity

Equivalently:

C has bounded expansion if for every d ∈ N there is c(d) ∈ N s.t.

avgdeg(H) 6 c(d) whenever H is a depth-d minor of some G ∈ C.

C is nowhere dense if for every d ∈ N there is t(d) ∈ N s.t.

Kt(d) is not a depth-d minor of any G ∈ C.

Key idea: Sparsity is a property of a class of graphs.

− It is a limit property of graphs from the class.

− Can be formalized using standard limit constructions (P, Toruńczyk).

− Classes of graphs as basic objects of interest.

Michał Pilipczuk Sparse graphs 9 / 41

Notions of sparsity

Equivalently:

C has bounded expansion if for every d ∈ N there is c(d) ∈ N s.t.

avgdeg(H) 6 c(d) whenever H is a depth-d minor of some G ∈ C.

C is nowhere dense if for every d ∈ N there is t(d) ∈ N s.t.

Kt(d) is not a depth-d minor of any G ∈ C.

Key idea: Sparsity is a property of a class of graphs.

− It is a limit property of graphs from the class.

− Can be formalized using standard limit constructions (P, Toruńczyk).

− Classes of graphs as basic objects of interest.

Michał Pilipczuk Sparse graphs 9 / 41

Notions of sparsity

Equivalently:

C has bounded expansion if for every d ∈ N there is c(d) ∈ N s.t.

avgdeg(H) 6 c(d) whenever H is a depth-d minor of some G ∈ C.

C is nowhere dense if for every d ∈ N there is t(d) ∈ N s.t.

Kt(d) is not a depth-d minor of any G ∈ C.

Key idea: Sparsity is a property of a class of graphs.

− It is a limit property of graphs from the class.

− Can be formalized using standard limit constructions (P, Toruńczyk).

− Classes of graphs as basic objects of interest.

Michał Pilipczuk Sparse graphs 9 / 41

Notions of sparsity

Equivalently:

C has bounded expansion if for every d ∈ N there is c(d) ∈ N s.t.

avgdeg(H) 6 c(d) whenever H is a depth-d minor of some G ∈ C.

C is nowhere dense if for every d ∈ N there is t(d) ∈ N s.t.

Kt(d) is not a depth-d minor of any G ∈ C.

Key idea: Sparsity is a property of a class of graphs.

− It is a limit property of graphs from the class.

− Can be formalized using standard limit constructions (P, Toruńczyk).

− Classes of graphs as basic objects of interest.

Michał Pilipczuk Sparse graphs 9 / 41

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth-d minors have max degree 6 ∆d+1
.

2. Every class that excludes some minor has bounded expansion.

Sol: Kt-minor-free graphs have avgdeg O(t
√

log t) and are minor-closed.

3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.

4. Consider the class C = {G : ∆(G) 6 girth(G)}.
4a: Show that C is nowhere dense.

Sol: ωd(G) > 3⇒ d > girth(G)/9⇒ d > ∆(G)/9⇒ ωd(G) 6 (9d)d .

4b: Show that C does not have bounded expansion.

Sol: Erdős random construction.

Fact. C is nowhere dense⇒ ∀d, ε > 0,∇d(G) 6 O(nε) for all G ∈ C.

Michał Pilipczuk Sparse graphs 10 / 41

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth-d minors have max degree 6 ∆d+1
.

2. Every class that excludes some minor has bounded expansion.

Sol: Kt-minor-free graphs have avgdeg O(t
√

log t) and are minor-closed.

3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.

4. Consider the class C = {G : ∆(G) 6 girth(G)}.
4a: Show that C is nowhere dense.

Sol: ωd(G) > 3⇒ d > girth(G)/9⇒ d > ∆(G)/9⇒ ωd(G) 6 (9d)d .

4b: Show that C does not have bounded expansion.

Sol: Erdős random construction.

Fact. C is nowhere dense⇒ ∀d, ε > 0,∇d(G) 6 O(nε) for all G ∈ C.

Michał Pilipczuk Sparse graphs 10 / 41

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth-d minors have max degree 6 ∆d+1
.

2. Every class that excludes some minor has bounded expansion.

Sol: Kt-minor-free graphs have avgdeg O(t
√

log t) and are minor-closed.

3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.

4. Consider the class C = {G : ∆(G) 6 girth(G)}.
4a: Show that C is nowhere dense.

Sol: ωd(G) > 3⇒ d > girth(G)/9⇒ d > ∆(G)/9⇒ ωd(G) 6 (9d)d .

4b: Show that C does not have bounded expansion.

Sol: Erdős random construction.

Fact. C is nowhere dense⇒ ∀d, ε > 0,∇d(G) 6 O(nε) for all G ∈ C.

Michał Pilipczuk Sparse graphs 10 / 41

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth-d minors have max degree 6 ∆d+1
.

2. Every class that excludes some minor has bounded expansion.

Sol: Kt-minor-free graphs have avgdeg O(t
√

log t) and are minor-closed.

3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.

4. Consider the class C = {G : ∆(G) 6 girth(G)}.
4a: Show that C is nowhere dense.

Sol: ωd(G) > 3⇒ d > girth(G)/9⇒ d > ∆(G)/9⇒ ωd(G) 6 (9d)d .

4b: Show that C does not have bounded expansion.

Sol: Erdős random construction.

Fact. C is nowhere dense⇒ ∀d, ε > 0,∇d(G) 6 O(nε) for all G ∈ C.

Michał Pilipczuk Sparse graphs 10 / 41

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth-d minors have max degree 6 ∆d+1
.

2. Every class that excludes some minor has bounded expansion.

Sol: Kt-minor-free graphs have avgdeg O(t
√

log t) and are minor-closed.

3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.

4. Consider the class C = {G : ∆(G) 6 girth(G)}.
4a: Show that C is nowhere dense.

Sol: ωd(G) > 3⇒ d > girth(G)/9⇒ d > ∆(G)/9⇒ ωd(G) 6 (9d)d .

4b: Show that C does not have bounded expansion.

Sol: Erdős random construction.

Fact. C is nowhere dense⇒ ∀d, ε > 0,∇d(G) 6 O(nε) for all G ∈ C.

Michał Pilipczuk Sparse graphs 10 / 41

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth-d minors have max degree 6 ∆d+1
.

2. Every class that excludes some minor has bounded expansion.

Sol: Kt-minor-free graphs have avgdeg O(t
√

log t) and are minor-closed.

3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.

4. Consider the class C = {G : ∆(G) 6 girth(G)}.
4a: Show that C is nowhere dense.

Sol: ωd(G) > 3⇒ d > girth(G)/9⇒ d > ∆(G)/9⇒ ωd(G) 6 (9d)d .

4b: Show that C does not have bounded expansion.

Sol: Erdős random construction.

Fact. C is nowhere dense⇒ ∀d, ε > 0,∇d(G) 6 O(nε) for all G ∈ C.

Michał Pilipczuk Sparse graphs 10 / 41

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth-d minors have max degree 6 ∆d+1
.

2. Every class that excludes some minor has bounded expansion.

Sol: Kt-minor-free graphs have avgdeg O(t
√

log t) and are minor-closed.

3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.

4. Consider the class C = {G : ∆(G) 6 girth(G)}.

4a: Show that C is nowhere dense.

Sol: ωd(G) > 3⇒ d > girth(G)/9⇒ d > ∆(G)/9⇒ ωd(G) 6 (9d)d .

4b: Show that C does not have bounded expansion.

Sol: Erdős random construction.

Fact. C is nowhere dense⇒ ∀d, ε > 0,∇d(G) 6 O(nε) for all G ∈ C.

Michał Pilipczuk Sparse graphs 10 / 41

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth-d minors have max degree 6 ∆d+1
.

2. Every class that excludes some minor has bounded expansion.

Sol: Kt-minor-free graphs have avgdeg O(t
√

log t) and are minor-closed.

3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.

4. Consider the class C = {G : ∆(G) 6 girth(G)}.
4a: Show that C is nowhere dense.

Sol: ωd(G) > 3⇒ d > girth(G)/9⇒ d > ∆(G)/9⇒ ωd(G) 6 (9d)d .

4b: Show that C does not have bounded expansion.

Sol: Erdős random construction.

Fact. C is nowhere dense⇒ ∀d, ε > 0,∇d(G) 6 O(nε) for all G ∈ C.

Michał Pilipczuk Sparse graphs 10 / 41

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth-d minors have max degree 6 ∆d+1
.

2. Every class that excludes some minor has bounded expansion.

Sol: Kt-minor-free graphs have avgdeg O(t
√

log t) and are minor-closed.

3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.

4. Consider the class C = {G : ∆(G) 6 girth(G)}.
4a: Show that C is nowhere dense.

Sol: ωd(G) > 3⇒ d > girth(G)/9⇒ d > ∆(G)/9⇒ ωd(G) 6 (9d)d .

4b: Show that C does not have bounded expansion.

Sol: Erdős random construction.

Fact. C is nowhere dense⇒ ∀d, ε > 0,∇d(G) 6 O(nε) for all G ∈ C.

Michał Pilipczuk Sparse graphs 10 / 41

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth-d minors have max degree 6 ∆d+1
.

2. Every class that excludes some minor has bounded expansion.

Sol: Kt-minor-free graphs have avgdeg O(t
√

log t) and are minor-closed.

3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.

4. Consider the class C = {G : ∆(G) 6 girth(G)}.
4a: Show that C is nowhere dense.

Sol: ωd(G) > 3⇒ d > girth(G)/9⇒ d > ∆(G)/9⇒ ωd(G) 6 (9d)d .

4b: Show that C does not have bounded expansion.

Sol: Erdős random construction.

Fact. C is nowhere dense⇒ ∀d, ε > 0,∇d(G) 6 O(nε) for all G ∈ C.

Michał Pilipczuk Sparse graphs 10 / 41

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth-d minors have max degree 6 ∆d+1
.

2. Every class that excludes some minor has bounded expansion.

Sol: Kt-minor-free graphs have avgdeg O(t
√

log t) and are minor-closed.

3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.

4. Consider the class C = {G : ∆(G) 6 girth(G)}.
4a: Show that C is nowhere dense.

Sol: ωd(G) > 3⇒ d > girth(G)/9⇒ d > ∆(G)/9⇒ ωd(G) 6 (9d)d .

4b: Show that C does not have bounded expansion.

Sol: Erdős random construction.

Fact. C is nowhere dense⇒ ∀d, ε > 0,∇d(G) 6 O(nε) for all G ∈ C.

Michał Pilipczuk Sparse graphs 10 / 41

Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth-d minors have max degree 6 ∆d+1
.

2. Every class that excludes some minor has bounded expansion.

Sol: Kt-minor-free graphs have avgdeg O(t
√

log t) and are minor-closed.

3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.

4. Consider the class C = {G : ∆(G) 6 girth(G)}.
4a: Show that C is nowhere dense.

Sol: ωd(G) > 3⇒ d > girth(G)/9⇒ d > ∆(G)/9⇒ ωd(G) 6 (9d)d .

4b: Show that C does not have bounded expansion.

Sol: Erdős random construction.

Fact. C is nowhere dense⇒ ∀d, ε > 0,∇d(G) 6 O(nε) for all G ∈ C.

Michał Pilipczuk Sparse graphs 10 / 41

The World of Sparsity

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Outerplanar

Planar

Bounded
genus

Linear forests

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forests

r

rr

∇∇ Locally bounded
expansion

Nowhere dense

∇∇
r

ωω

figure by Felix Reidl

Michał Pilipczuk Sparse graphs 11 / 41

Equivalent characterizations

Sparsity of shallow minors

Degeneracy

Weak coloring number

Generalized coloring numbers

Uniform quasi-wideness Neighborhood complexity

Low treedepth colorings

Fraternal augmentations

k-Helly property

Neighborhood covers

Spli�er game

Sparsity of shallow top-minors

Stability
Part 2

Part 3

Part 4

Michał Pilipczuk Sparse graphs 12 / 41

Equivalent characterizations

Sparsity of shallow minors

Degeneracy

Weak coloring number

Generalized coloring numbers

Uniform quasi-wideness Neighborhood complexity

Low treedepth colorings

Fraternal augmentations

k-Helly property

Neighborhood covers

Spli�er game

Sparsity of shallow top-minors

Stability
Part 2

Part 3

Part 4

Michał Pilipczuk Sparse graphs 12 / 41

Equivalent characterizations

Sparsity of shallow minors

Degeneracy

Weak coloring number

Generalized coloring numbers

Uniform quasi-wideness

Neighborhood complexity

Low treedepth colorings

Fraternal augmentations

k-Helly property

Neighborhood covers

Spli�er game

Sparsity of shallow top-minors

Stability
Part 2

Part 3

Part 4

Michał Pilipczuk Sparse graphs 12 / 41

Equivalent characterizations

Sparsity of shallow minors

Degeneracy

Weak coloring number

Generalized coloring numbers

Uniform quasi-wideness Neighborhood complexity

Low treedepth colorings

Fraternal augmentations

k-Helly property

Neighborhood covers

Spli�er game

Sparsity of shallow top-minors

Stability
Part 2

Part 3

Part 4

Michał Pilipczuk Sparse graphs 12 / 41

Equivalent characterizations

Sparsity of shallow minors

Degeneracy

Weak coloring number

Generalized coloring numbers

Uniform quasi-wideness Neighborhood complexity

Low treedepth colorings

Fraternal augmentations

k-Helly property

Neighborhood covers

Spli�er game

Sparsity of shallow top-minors

Stability
Part 2

Part 3

Part 4

Michał Pilipczuk Sparse graphs 12 / 41

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

− Equivalence shows that we are working with fundamental notions.

− Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

− Goal: Describe structural properties implied by sparsity.

These properties can be used to design e�icient algorithms.

− Areas: Parameterized, approximation, and distributed algorithms.

− Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is subgraph-closed.

Then C is nowhere dense⇔ FO Model Checking is FPT on C.

Michał Pilipczuk Sparse graphs 13 / 41

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

− Equivalence shows that we are working with fundamental notions.

− Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

− Goal: Describe structural properties implied by sparsity.

These properties can be used to design e�icient algorithms.

− Areas: Parameterized, approximation, and distributed algorithms.

− Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is subgraph-closed.

Then C is nowhere dense⇔ FO Model Checking is FPT on C.

Michał Pilipczuk Sparse graphs 13 / 41

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

− Equivalence shows that we are working with fundamental notions.

− Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

− Goal: Describe structural properties implied by sparsity.

These properties can be used to design e�icient algorithms.

− Areas: Parameterized, approximation, and distributed algorithms.

− Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is subgraph-closed.

Then C is nowhere dense⇔ FO Model Checking is FPT on C.

Michał Pilipczuk Sparse graphs 13 / 41

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

− Equivalence shows that we are working with fundamental notions.

− Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

− Goal: Describe structural properties implied by sparsity.

These properties can be used to design e�icient algorithms.

− Areas: Parameterized, approximation, and distributed algorithms.

− Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is subgraph-closed.

Then C is nowhere dense⇔ FO Model Checking is FPT on C.

Michał Pilipczuk Sparse graphs 13 / 41

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

− Equivalence shows that we are working with fundamental notions.

− Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

− Goal: Describe structural properties implied by sparsity.

These properties can be used to design e�icient algorithms.

− Areas: Parameterized, approximation, and distributed algorithms.

− Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is subgraph-closed.

Then C is nowhere dense⇔ FO Model Checking is FPT on C.

Michał Pilipczuk Sparse graphs 13 / 41

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

− Equivalence shows that we are working with fundamental notions.

− Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

− Goal: Describe structural properties implied by sparsity.

These properties can be used to design e�icient algorithms.

− Areas: Parameterized, approximation, and distributed algorithms.

− Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is subgraph-closed.

Then C is nowhere dense⇔ FO Model Checking is FPT on C.

Michał Pilipczuk Sparse graphs 13 / 41

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

− Equivalence shows that we are working with fundamental notions.

− Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

− Goal: Describe structural properties implied by sparsity.

These properties can be used to design e�icient algorithms.

− Areas: Parameterized, approximation, and distributed algorithms.

− Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is subgraph-closed.

Then C is nowhere dense⇔ FO Model Checking is FPT on C.

Michał Pilipczuk Sparse graphs 13 / 41

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

− Equivalence shows that we are working with fundamental notions.

− Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

− Goal: Describe structural properties implied by sparsity.

These properties can be used to design e�icient algorithms.

− Areas: Parameterized, approximation, and distributed algorithms.

− Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is subgraph-closed.

Then C is nowhere dense⇔ FO Model Checking is FPT on C.

Michał Pilipczuk Sparse graphs 13 / 41

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

− Equivalence shows that we are working with fundamental notions.

− Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

− Goal: Describe structural properties implied by sparsity.

These properties can be used to design e�icient algorithms.

− Areas: Parameterized, approximation, and distributed algorithms.

− Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is subgraph-closed.

Then C is nowhere dense⇔ FO Model Checking is FPT on C.

Michał Pilipczuk Sparse graphs 13 / 41

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

− Equivalence shows that we are working with fundamental notions.

− Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

− Goal: Describe structural properties implied by sparsity.

These properties can be used to design e�icient algorithms.

− Areas: Parameterized, approximation, and distributed algorithms.

− Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is subgraph-closed.

Then C is nowhere dense⇔ FO Model Checking is FPT on C.

Michał Pilipczuk Sparse graphs 13 / 41

Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

− Equivalence shows that we are working with fundamental notions.

− Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

− Goal: Describe structural properties implied by sparsity.

These properties can be used to design e�icient algorithms.

− Areas: Parameterized, approximation, and distributed algorithms.

− Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is subgraph-closed.

Then C is nowhere dense⇔ FO Model Checking is FPT on C.

Michał Pilipczuk Sparse graphs 13 / 41

Part 2:

Generalized coloring numbers

Degeneracy

Definition

G is d-degenerate⇔ Every subgraph of G has a vertex of degree 6 d .

dgn(G) := least d for which G is d-degenerate.

1. Prove that mad(G)/2 6 dgn(G) 6 mad(G).

right: mindeg 6 avgdeg

le�: |E(H)| 6 dgn(G) · |V (H)| by removing vertices one by one.

2. Prove that G is d-degenerate⇔
G has a vertex ordering where each vertex has 6 d neighbors to the le�.

(⇒): extract vertices one by one

(⇐): examine the rightmost vertex

3. d-degenerate graphs are (d + 1)-colorable

Sol: Greedy le�-to-right coloring on the ordering.

Michał Pilipczuk Sparse graphs 14 / 41

Degeneracy

Definition

G is d-degenerate⇔ Every subgraph of G has a vertex of degree 6 d .

dgn(G) := least d for which G is d-degenerate.

1. Prove that mad(G)/2 6 dgn(G) 6 mad(G).

right: mindeg 6 avgdeg

le�: |E(H)| 6 dgn(G) · |V (H)| by removing vertices one by one.

2. Prove that G is d-degenerate⇔
G has a vertex ordering where each vertex has 6 d neighbors to the le�.

(⇒): extract vertices one by one

(⇐): examine the rightmost vertex

3. d-degenerate graphs are (d + 1)-colorable

Sol: Greedy le�-to-right coloring on the ordering.

Michał Pilipczuk Sparse graphs 14 / 41

Degeneracy

Definition

G is d-degenerate⇔ Every subgraph of G has a vertex of degree 6 d .

dgn(G) := least d for which G is d-degenerate.

1. Prove that mad(G)/2 6 dgn(G) 6 mad(G).

right: mindeg 6 avgdeg

le�: |E(H)| 6 dgn(G) · |V (H)| by removing vertices one by one.

2. Prove that G is d-degenerate⇔
G has a vertex ordering where each vertex has 6 d neighbors to the le�.

(⇒): extract vertices one by one

(⇐): examine the rightmost vertex

3. d-degenerate graphs are (d + 1)-colorable

Sol: Greedy le�-to-right coloring on the ordering.

Michał Pilipczuk Sparse graphs 14 / 41

Degeneracy

Definition

G is d-degenerate⇔ Every subgraph of G has a vertex of degree 6 d .

dgn(G) := least d for which G is d-degenerate.

1. Prove that mad(G)/2 6 dgn(G) 6 mad(G).

right: mindeg 6 avgdeg

le�: |E(H)| 6 dgn(G) · |V (H)| by removing vertices one by one.

2. Prove that G is d-degenerate⇔
G has a vertex ordering where each vertex has 6 d neighbors to the le�.

(⇒): extract vertices one by one

(⇐): examine the rightmost vertex

3. d-degenerate graphs are (d + 1)-colorable

Sol: Greedy le�-to-right coloring on the ordering.

Michał Pilipczuk Sparse graphs 14 / 41

Degeneracy

Definition

G is d-degenerate⇔ Every subgraph of G has a vertex of degree 6 d .

dgn(G) := least d for which G is d-degenerate.

1. Prove that mad(G)/2 6 dgn(G) 6 mad(G).

right: mindeg 6 avgdeg

le�: |E(H)| 6 dgn(G) · |V (H)| by removing vertices one by one.

2. Prove that G is d-degenerate⇔
G has a vertex ordering where each vertex has 6 d neighbors to the le�.

(⇒): extract vertices one by one

(⇐): examine the rightmost vertex

3. d-degenerate graphs are (d + 1)-colorable

Sol: Greedy le�-to-right coloring on the ordering.

Michał Pilipczuk Sparse graphs 14 / 41

Degeneracy

Definition

G is d-degenerate⇔ Every subgraph of G has a vertex of degree 6 d .

dgn(G) := least d for which G is d-degenerate.

1. Prove that mad(G)/2 6 dgn(G) 6 mad(G).

right: mindeg 6 avgdeg

le�: |E(H)| 6 dgn(G) · |V (H)| by removing vertices one by one.

2. Prove that G is d-degenerate⇔
G has a vertex ordering where each vertex has 6 d neighbors to the le�.

(⇒): extract vertices one by one

(⇐): examine the rightmost vertex

3. d-degenerate graphs are (d + 1)-colorable

Sol: Greedy le�-to-right coloring on the ordering.

Michał Pilipczuk Sparse graphs 14 / 41

Degeneracy

Definition

G is d-degenerate⇔ Every subgraph of G has a vertex of degree 6 d .

dgn(G) := least d for which G is d-degenerate.

1. Prove that mad(G)/2 6 dgn(G) 6 mad(G).

right: mindeg 6 avgdeg

le�: |E(H)| 6 dgn(G) · |V (H)| by removing vertices one by one.

2. Prove that G is d-degenerate⇔
G has a vertex ordering where each vertex has 6 d neighbors to the le�.

(⇒): extract vertices one by one

(⇐): examine the rightmost vertex

3. d-degenerate graphs are (d + 1)-colorable

Sol: Greedy le�-to-right coloring on the ordering.

Michał Pilipczuk Sparse graphs 14 / 41

Degeneracy

Definition

G is d-degenerate⇔ Every subgraph of G has a vertex of degree 6 d .

dgn(G) := least d for which G is d-degenerate.

1. Prove that mad(G)/2 6 dgn(G) 6 mad(G).

right: mindeg 6 avgdeg

le�: |E(H)| 6 dgn(G) · |V (H)| by removing vertices one by one.

2. Prove that G is d-degenerate⇔
G has a vertex ordering where each vertex has 6 d neighbors to the le�.

(⇒): extract vertices one by one

(⇐): examine the rightmost vertex

3. d-degenerate graphs are (d + 1)-colorable

Sol: Greedy le�-to-right coloring on the ordering.

Michał Pilipczuk Sparse graphs 14 / 41

Degeneracy

Definition

G is d-degenerate⇔ Every subgraph of G has a vertex of degree 6 d .

dgn(G) := least d for which G is d-degenerate.

1. Prove that mad(G)/2 6 dgn(G) 6 mad(G).

right: mindeg 6 avgdeg

le�: |E(H)| 6 dgn(G) · |V (H)| by removing vertices one by one.

2. Prove that G is d-degenerate⇔
G has a vertex ordering where each vertex has 6 d neighbors to the le�.

(⇒): extract vertices one by one

(⇐): examine the rightmost vertex

3. d-degenerate graphs are (d + 1)-colorable

Sol: Greedy le�-to-right coloring on the ordering.

Michał Pilipczuk Sparse graphs 14 / 41

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings! mad(·), which concerns depth-0 minors.

Idea: Introduce a generalization of degeneracy orderings to larger depth.

These are called generalized coloring numbers.

There are three natural ways to make the generalization.

Suppose d ∈ N, G is a graph, and σ is a vertex ordering.

Consider any vertex v .

Want: Define “σ-smaller neighbors” of v at “depth” d .

v

Michał Pilipczuk Sparse graphs 15 / 41

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings! mad(·), which concerns depth-0 minors.

Idea: Introduce a generalization of degeneracy orderings to larger depth.

These are called generalized coloring numbers.

There are three natural ways to make the generalization.

Suppose d ∈ N, G is a graph, and σ is a vertex ordering.

Consider any vertex v .

Want: Define “σ-smaller neighbors” of v at “depth” d .

v

Michał Pilipczuk Sparse graphs 15 / 41

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings! mad(·), which concerns depth-0 minors.

Idea: Introduce a generalization of degeneracy orderings to larger depth.

These are called generalized coloring numbers.

There are three natural ways to make the generalization.

Suppose d ∈ N, G is a graph, and σ is a vertex ordering.

Consider any vertex v .

Want: Define “σ-smaller neighbors” of v at “depth” d .

v

Michał Pilipczuk Sparse graphs 15 / 41

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings! mad(·), which concerns depth-0 minors.

Idea: Introduce a generalization of degeneracy orderings to larger depth.

These are called generalized coloring numbers.

There are three natural ways to make the generalization.

Suppose d ∈ N, G is a graph, and σ is a vertex ordering.

Consider any vertex v .

Want: Define “σ-smaller neighbors” of v at “depth” d .

v

Michał Pilipczuk Sparse graphs 15 / 41

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings! mad(·), which concerns depth-0 minors.

Idea: Introduce a generalization of degeneracy orderings to larger depth.

These are called generalized coloring numbers.

There are three natural ways to make the generalization.

Suppose d ∈ N, G is a graph, and σ is a vertex ordering.

Consider any vertex v .

Want: Define “σ-smaller neighbors” of v at “depth” d .

v

Michał Pilipczuk Sparse graphs 15 / 41

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings! mad(·), which concerns depth-0 minors.

Idea: Introduce a generalization of degeneracy orderings to larger depth.

These are called generalized coloring numbers.

There are three natural ways to make the generalization.

Suppose d ∈ N, G is a graph, and σ is a vertex ordering.

Consider any vertex v .

Want: Define “σ-smaller neighbors” of v at “depth” d .

v

Michał Pilipczuk Sparse graphs 15 / 41

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings! mad(·), which concerns depth-0 minors.

Idea: Introduce a generalization of degeneracy orderings to larger depth.

These are called generalized coloring numbers.

There are three natural ways to make the generalization.

Suppose d ∈ N, G is a graph, and σ is a vertex ordering.

Consider any vertex v .

Want: Define “σ-smaller neighbors” of v at “depth” d .

v

Michał Pilipczuk Sparse graphs 15 / 41

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings! mad(·), which concerns depth-0 minors.

Idea: Introduce a generalization of degeneracy orderings to larger depth.

These are called generalized coloring numbers.

There are three natural ways to make the generalization.

Suppose d ∈ N, G is a graph, and σ is a vertex ordering.

Consider any vertex v .

Want: Define “σ-smaller neighbors” of v at “depth” d .

v

Michał Pilipczuk Sparse graphs 15 / 41

Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings! mad(·), which concerns depth-0 minors.

Idea: Introduce a generalization of degeneracy orderings to larger depth.

These are called generalized coloring numbers.

There are three natural ways to make the generalization.

Suppose d ∈ N, G is a graph, and σ is a vertex ordering.

Consider any vertex v .

Want: Define “σ-smaller neighbors” of v at “depth” d .

v

Michał Pilipczuk Sparse graphs 15 / 41

Bounded depth reachability

D1: u 6σ v is weakly d-reachable from v ⇔
There is a v-to-u path P of length 6 d that is entirely >σ u.

vu

WReachd [G, σ, v] := { u 6σ v : u is weakly d-reachable from v }.

D2: u 6σ v is strongly d-reachable from v ⇔
There is a v-to-u path P of length 6 d that is >σ v , apart from u

vu

SReachd [G, σ, v] := { u 6σ v : u is strongly d-reachable from v }.

D3: admd(G, σ, v) :=max # of disjoint v-to-(<σ v) paths of length 6 d

v

Michał Pilipczuk Sparse graphs 16 / 41

Bounded depth reachability
D1: u 6σ v is weakly d-reachable from v ⇔

There is a v-to-u path P of length 6 d that is entirely >σ u.

vu

WReachd [G, σ, v] := { u 6σ v : u is weakly d-reachable from v }.

D2: u 6σ v is strongly d-reachable from v ⇔
There is a v-to-u path P of length 6 d that is >σ v , apart from u

vu

SReachd [G, σ, v] := { u 6σ v : u is strongly d-reachable from v }.

D3: admd(G, σ, v) :=max # of disjoint v-to-(<σ v) paths of length 6 d

v

Michał Pilipczuk Sparse graphs 16 / 41

Bounded depth reachability
D1: u 6σ v is weakly d-reachable from v ⇔

There is a v-to-u path P of length 6 d that is entirely >σ u.

vu

WReachd [G, σ, v] := { u 6σ v : u is weakly d-reachable from v }.

D2: u 6σ v is strongly d-reachable from v ⇔
There is a v-to-u path P of length 6 d that is >σ v , apart from u

vu

SReachd [G, σ, v] := { u 6σ v : u is strongly d-reachable from v }.

D3: admd(G, σ, v) :=max # of disjoint v-to-(<σ v) paths of length 6 d

v

Michał Pilipczuk Sparse graphs 16 / 41

Bounded depth reachability
D1: u 6σ v is weakly d-reachable from v ⇔

There is a v-to-u path P of length 6 d that is entirely >σ u.

vu

WReachd [G, σ, v] := { u 6σ v : u is weakly d-reachable from v }.

D2: u 6σ v is strongly d-reachable from v ⇔
There is a v-to-u path P of length 6 d that is >σ v , apart from u

vu

SReachd [G, σ, v] := { u 6σ v : u is strongly d-reachable from v }.

D3: admd(G, σ, v) :=max # of disjoint v-to-(<σ v) paths of length 6 d

v

Michał Pilipczuk Sparse graphs 16 / 41

Bounded depth reachability
D1: u 6σ v is weakly d-reachable from v ⇔

There is a v-to-u path P of length 6 d that is entirely >σ u.

vu

WReachd [G, σ, v] := { u 6σ v : u is weakly d-reachable from v }.

D2: u 6σ v is strongly d-reachable from v ⇔
There is a v-to-u path P of length 6 d that is >σ v , apart from u

vu

SReachd [G, σ, v] := { u 6σ v : u is strongly d-reachable from v }.

D3: admd(G, σ, v) :=max # of disjoint v-to-(<σ v) paths of length 6 d

v

Michał Pilipczuk Sparse graphs 16 / 41

Bounded depth reachability
D1: u 6σ v is weakly d-reachable from v ⇔

There is a v-to-u path P of length 6 d that is entirely >σ u.

vu

WReachd [G, σ, v] := { u 6σ v : u is weakly d-reachable from v }.

D2: u 6σ v is strongly d-reachable from v ⇔
There is a v-to-u path P of length 6 d that is >σ v , apart from u

vu

SReachd [G, σ, v] := { u 6σ v : u is strongly d-reachable from v }.

D3: admd(G, σ, v) :=max # of disjoint v-to-(<σ v) paths of length 6 d

v
Michał Pilipczuk Sparse graphs 16 / 41

Generalized coloring numbers

Definition

For a graph G and vertex ordering σ, we define:

wcold(G, σ) := maxv |WReachd [G, σ, v]|,
scold(G, σ) := maxv |SReachd [G, σ, v]|,
admd(G, σ) := maxv admd(G, σ, v),

wcold(G) := minσ wcold(G, σ),

scold(G) := minσ scold(G, σ),

admd(G) := minσ admd(G, σ).

1. dgn(G) = adm0(G) = scol0(G)− 1 = wcol0(G)− 1.

2. admd(G) 6 scold(G) 6 wcold(G).

Now: These parameters are functionally equivalent.

Michał Pilipczuk Sparse graphs 17 / 41

Generalized coloring numbers

Definition

For a graph G and vertex ordering σ, we define:

wcold(G, σ) := maxv |WReachd [G, σ, v]|,
scold(G, σ) := maxv |SReachd [G, σ, v]|,
admd(G, σ) := maxv admd(G, σ, v),

wcold(G) := minσ wcold(G, σ),

scold(G) := minσ scold(G, σ),

admd(G) := minσ admd(G, σ).

1. dgn(G) = adm0(G) = scol0(G)− 1 = wcol0(G)− 1.

2. admd(G) 6 scold(G) 6 wcold(G).

Now: These parameters are functionally equivalent.

Michał Pilipczuk Sparse graphs 17 / 41

Generalized coloring numbers

Definition

For a graph G and vertex ordering σ, we define:

wcold(G, σ) := maxv |WReachd [G, σ, v]|,
scold(G, σ) := maxv |SReachd [G, σ, v]|,
admd(G, σ) := maxv admd(G, σ, v),

wcold(G) := minσ wcold(G, σ),

scold(G) := minσ scold(G, σ),

admd(G) := minσ admd(G, σ).

1. dgn(G) = adm0(G) = scol0(G)− 1 = wcol0(G)− 1.

2. admd(G) 6 scold(G) 6 wcold(G).

Now: These parameters are functionally equivalent.

Michał Pilipczuk Sparse graphs 17 / 41

Generalized coloring numbers

Definition

For a graph G and vertex ordering σ, we define:

wcold(G, σ) := maxv |WReachd [G, σ, v]|,
scold(G, σ) := maxv |SReachd [G, σ, v]|,
admd(G, σ) := maxv admd(G, σ, v),

wcold(G) := minσ wcold(G, σ),

scold(G) := minσ scold(G, σ),

admd(G) := minσ admd(G, σ).

1. dgn(G) = adm0(G) = scol0(G)− 1 = wcol0(G)− 1.

2. admd(G) 6 scold(G) 6 wcold(G).

Now: These parameters are functionally equivalent.

Michał Pilipczuk Sparse graphs 17 / 41

Generalized coloring numbers

Definition

For a graph G and vertex ordering σ, we define:

wcold(G, σ) := maxv |WReachd [G, σ, v]|,
scold(G, σ) := maxv |SReachd [G, σ, v]|,
admd(G, σ) := maxv admd(G, σ, v),

wcold(G) := minσ wcold(G, σ),

scold(G) := minσ scold(G, σ),

admd(G) := minσ admd(G, σ).

1. dgn(G) = adm0(G) = scol0(G)− 1 = wcol0(G)− 1.

2. admd(G) 6 scold(G) 6 wcold(G).

Now: These parameters are functionally equivalent.

Michał Pilipczuk Sparse graphs 17 / 41

Generalized coloring numbers

Definition

For a graph G and vertex ordering σ, we define:

wcold(G, σ) := maxv |WReachd [G, σ, v]|,
scold(G, σ) := maxv |SReachd [G, σ, v]|,
admd(G, σ) := maxv admd(G, σ, v),

wcold(G) := minσ wcold(G, σ),

scold(G) := minσ scold(G, σ),

admd(G) := minσ admd(G, σ).

1. dgn(G) = adm0(G) = scol0(G)− 1 = wcol0(G)− 1.

2. admd(G) 6 scold(G) 6 wcold(G).

Now: These parameters are functionally equivalent.

Michał Pilipczuk Sparse graphs 17 / 41

Equivalence of generalized coloring numbers

1. scold(G) 6 1 + admd(G)d .

v

2. wcold(G) 6 1 + scold(G) + scold(G)2 + . . . + scold(G)d .

v

Michał Pilipczuk Sparse graphs 18 / 41

Equivalence with grads

Lemma

For a graph G and d ∈ N, we have:

admd(G) 6 6d(∇d(G) + 1)3
, ∇d(G) 6 wcol4d+1(G).

Proof of ∇d(G) 6 wcol4d+1(G):

− Let H �d G and {Ju : u ∈ V (H)} be a model.

− Let φ(u) := minσ V (Ju).

− Let w ∈ V (H) be such that φ(w) is σ-maximal.

− Obs: For each u ∈ NH(w), we have φ(u) ∈WReach4d+1[G, σ, φ(w)].

− Cor: w has degree 6 wcol4d+1(G) in H.

− Cor: Every H �d G has a vertex of degree 6 wcol4d+1(G). �

Michał Pilipczuk Sparse graphs 19 / 41

Equivalence with grads

Lemma

For a graph G and d ∈ N, we have:

admd(G) 6 6d(∇d(G) + 1)3
, ∇d(G) 6 wcol4d+1(G).

Proof of ∇d(G) 6 wcol4d+1(G):

− Let H �d G and {Ju : u ∈ V (H)} be a model.

− Let φ(u) := minσ V (Ju).

− Let w ∈ V (H) be such that φ(w) is σ-maximal.

− Obs: For each u ∈ NH(w), we have φ(u) ∈WReach4d+1[G, σ, φ(w)].

− Cor: w has degree 6 wcol4d+1(G) in H.

− Cor: Every H �d G has a vertex of degree 6 wcol4d+1(G). �

Michał Pilipczuk Sparse graphs 19 / 41

Equivalence with grads

Lemma

For a graph G and d ∈ N, we have:

admd(G) 6 6d(∇d(G) + 1)3
, ∇d(G) 6 wcol4d+1(G).

Proof of ∇d(G) 6 wcol4d+1(G):

− Let H �d G and {Ju : u ∈ V (H)} be a model.

− Let φ(u) := minσ V (Ju).

− Let w ∈ V (H) be such that φ(w) is σ-maximal.

− Obs: For each u ∈ NH(w), we have φ(u) ∈WReach4d+1[G, σ, φ(w)].

− Cor: w has degree 6 wcol4d+1(G) in H.

− Cor: Every H �d G has a vertex of degree 6 wcol4d+1(G). �

Michał Pilipczuk Sparse graphs 19 / 41

Equivalence with grads

Sketch of proof of admd(G) 6 6d(∇d(G) + 1)3:

− There is a greedy algorithm, similarly as for degeneracy.

− If the algorithm gets stuck, it uncovers the following structure:

−We can now find a dense depth-d minor. �

Theorem

For a class of graphs C, the following are equivalent:

− C has bounded expansion;

− ∇d(C) is finite for all d ∈ N;

− wcold(C) is finite for all d ∈ N;

− scold(C) is finite for all d ∈ N;

− admd(C) is finite for all d ∈ N.

Michał Pilipczuk Sparse graphs 20 / 41

Equivalence with grads

Sketch of proof of admd(G) 6 6d(∇d(G) + 1)3:

− There is a greedy algorithm, similarly as for degeneracy.

− If the algorithm gets stuck, it uncovers the following structure:

−We can now find a dense depth-d minor. �

Theorem

For a class of graphs C, the following are equivalent:

− C has bounded expansion;

− ∇d(C) is finite for all d ∈ N;

− wcold(C) is finite for all d ∈ N;

− scold(C) is finite for all d ∈ N;

− admd(C) is finite for all d ∈ N.

Michał Pilipczuk Sparse graphs 20 / 41

Equivalence with grads

Sketch of proof of admd(G) 6 6d(∇d(G) + 1)3:

− There is a greedy algorithm, similarly as for degeneracy.

− If the algorithm gets stuck, it uncovers the following structure:

−We can now find a dense depth-d minor. �

Theorem

For a class of graphs C, the following are equivalent:

− C has bounded expansion;

− ∇d(C) is finite for all d ∈ N;

− wcold(C) is finite for all d ∈ N;

− scold(C) is finite for all d ∈ N;

− admd(C) is finite for all d ∈ N.

Michał Pilipczuk Sparse graphs 20 / 41

Equivalence with grads

Sketch of proof of admd(G) 6 6d(∇d(G) + 1)3:

− There is a greedy algorithm, similarly as for degeneracy.

− If the algorithm gets stuck, it uncovers the following structure:

−We can now find a dense depth-d minor. �

Theorem

For a class of graphs C, the following are equivalent:

− C has bounded expansion;

− ∇d(C) is finite for all d ∈ N;

− wcold(C) is finite for all d ∈ N;

− scold(C) is finite for all d ∈ N;

− admd(C) is finite for all d ∈ N.

Michał Pilipczuk Sparse graphs 20 / 41

Equivalence with grads

Sketch of proof of admd(G) 6 6d(∇d(G) + 1)3:

− There is a greedy algorithm, similarly as for degeneracy.

− If the algorithm gets stuck, it uncovers the following structure:

−We can now find a dense depth-d minor. �

Theorem

For a class of graphs C, the following are equivalent:

− C has bounded expansion;

− ∇d(C) is finite for all d ∈ N;

− wcold(C) is finite for all d ∈ N;

− scold(C) is finite for all d ∈ N;

− admd(C) is finite for all d ∈ N.

Michał Pilipczuk Sparse graphs 20 / 41

Equivalence with grads

Sketch of proof of admd(G) 6 6d(∇d(G) + 1)3:

− There is a greedy algorithm, similarly as for degeneracy.

− If the algorithm gets stuck, it uncovers the following structure:

−We can now find a dense depth-d minor. �

Theorem

For a class of graphs C, the following are equivalent:

− C has bounded expansion;

− ∇d(C) is finite for all d ∈ N;

− wcold(C) is finite for all d ∈ N;

− scold(C) is finite for all d ∈ N;

− admd(C) is finite for all d ∈ N.

Michał Pilipczuk Sparse graphs 20 / 41

Distance-d domination

Definition

Let G be a graph and d ∈ N.

D ⊆ V (G) is a dist-d dominating set if

⋃
u∈D Balld(u) = V (G).

domd(G) := min size of a dist-d dominating set in G

Let σ be a vertex ordering of G. Consider the algorithm:

− Every vertex v points to minσWReachd [G, σ, v].

− Let D := set of vertices that are pointed to.

1. Prove that |D| 6 wcol2d(G, σ) · domd(G).

Michał Pilipczuk Sparse graphs 21 / 41

Distance-d domination

Definition

Let G be a graph and d ∈ N.

D ⊆ V (G) is a dist-d dominating set if

⋃
u∈D Balld(u) = V (G).

domd(G) := min size of a dist-d dominating set in G

Let σ be a vertex ordering of G. Consider the algorithm:

− Every vertex v points to minσWReachd [G, σ, v].

− Let D := set of vertices that are pointed to.

1. Prove that |D| 6 wcol2d(G, σ) · domd(G).

Michał Pilipczuk Sparse graphs 21 / 41

Distance-d domination

Definition

Let G be a graph and d ∈ N.

D ⊆ V (G) is a dist-d dominating set if

⋃
u∈D Balld(u) = V (G).

domd(G) := min size of a dist-d dominating set in G

Let σ be a vertex ordering of G. Consider the algorithm:

− Every vertex v points to minσWReachd [G, σ, v].

− Let D := set of vertices that are pointed to.

1. Prove that |D| 6 wcol2d(G, σ) · domd(G).

Michał Pilipczuk Sparse graphs 21 / 41

Distance-d domination

Definition

Let G be a graph and d ∈ N.

D ⊆ V (G) is a dist-d dominating set if

⋃
u∈D Balld(u) = V (G).

domd(G) := min size of a dist-d dominating set in G

Let σ be a vertex ordering of G. Consider the algorithm:

− Every vertex v points to minσWReachd [G, σ, v].

− Let D := set of vertices that are pointed to.

1. Prove that |D| 6 wcol2d(G, σ) · domd(G).

Michał Pilipczuk Sparse graphs 21 / 41

Distance-d domination

Definition

Let G be a graph and d ∈ N.

D ⊆ V (G) is a dist-d dominating set if

⋃
u∈D Balld(u) = V (G).

domd(G) := min size of a dist-d dominating set in G

Let σ be a vertex ordering of G. Consider the algorithm:

− Every vertex v points to minσWReachd [G, σ, v].

− Let D := set of vertices that are pointed to.

1. Prove that |D| 6 wcol2d(G, σ) · domd(G).

Michał Pilipczuk Sparse graphs 21 / 41

Distance-d domination

Definition

Let G be a graph and d ∈ N.

D ⊆ V (G) is a dist-d dominating set if

⋃
u∈D Balld(u) = V (G).

domd(G) := min size of a dist-d dominating set in G

Let σ be a vertex ordering of G. Consider the algorithm:

− Every vertex v points to minσWReachd [G, σ, v].

− Let D := set of vertices that are pointed to.

1. Prove that |D| 6 wcol2d(G, σ) · domd(G).

Michał Pilipczuk Sparse graphs 21 / 41

Hi�ing and packing duality

Cor: Constant-factor apx algorithm for domd(G) in bnd expansion classes.

− Compute σ with wcol2d(G, σ) bounded by a constant.

− Each v picks minσWReachd [G, σ, v].

− Output the picked vertices.

Obs: domd(G) is the hi�ing number for radius-d balls.

Def: Let scad(G) be the packing number for radius-d balls.

Obviously scad(G) 6 domd(G), but the gap is unbounded in general.

Theorem (Dvořák)

For every G and d ∈ N, we have domd(G) 6 wcol2d(G)2 · scad(G).

Cor: Constant-factor gap in bounded expansion classes.

Proof: A greedy procedure on a vertex ordering witnessing wcol2d(G).

Michał Pilipczuk Sparse graphs 22 / 41

Hi�ing and packing duality

Cor: Constant-factor apx algorithm for domd(G) in bnd expansion classes.

− Compute σ with wcol2d(G, σ) bounded by a constant.

− Each v picks minσWReachd [G, σ, v].

− Output the picked vertices.

Obs: domd(G) is the hi�ing number for radius-d balls.

Def: Let scad(G) be the packing number for radius-d balls.

Obviously scad(G) 6 domd(G), but the gap is unbounded in general.

Theorem (Dvořák)

For every G and d ∈ N, we have domd(G) 6 wcol2d(G)2 · scad(G).

Cor: Constant-factor gap in bounded expansion classes.

Proof: A greedy procedure on a vertex ordering witnessing wcol2d(G).

Michał Pilipczuk Sparse graphs 22 / 41

Hi�ing and packing duality

Cor: Constant-factor apx algorithm for domd(G) in bnd expansion classes.

− Compute σ with wcol2d(G, σ) bounded by a constant.

− Each v picks minσWReachd [G, σ, v].

− Output the picked vertices.

Obs: domd(G) is the hi�ing number for radius-d balls.

Def: Let scad(G) be the packing number for radius-d balls.

Obviously scad(G) 6 domd(G), but the gap is unbounded in general.

Theorem (Dvořák)

For every G and d ∈ N, we have domd(G) 6 wcol2d(G)2 · scad(G).

Cor: Constant-factor gap in bounded expansion classes.

Proof: A greedy procedure on a vertex ordering witnessing wcol2d(G).

Michał Pilipczuk Sparse graphs 22 / 41

Hi�ing and packing duality

Cor: Constant-factor apx algorithm for domd(G) in bnd expansion classes.

− Compute σ with wcol2d(G, σ) bounded by a constant.

− Each v picks minσWReachd [G, σ, v].

− Output the picked vertices.

Obs: domd(G) is the hi�ing number for radius-d balls.

Def: Let scad(G) be the packing number for radius-d balls.

Obviously scad(G) 6 domd(G), but the gap is unbounded in general.

Theorem (Dvořák)

For every G and d ∈ N, we have domd(G) 6 wcol2d(G)2 · scad(G).

Cor: Constant-factor gap in bounded expansion classes.

Proof: A greedy procedure on a vertex ordering witnessing wcol2d(G).

Michał Pilipczuk Sparse graphs 22 / 41

Hi�ing and packing duality

Cor: Constant-factor apx algorithm for domd(G) in bnd expansion classes.

− Compute σ with wcol2d(G, σ) bounded by a constant.

− Each v picks minσWReachd [G, σ, v].

− Output the picked vertices.

Obs: domd(G) is the hi�ing number for radius-d balls.

Def: Let scad(G) be the packing number for radius-d balls.

Obviously scad(G) 6 domd(G), but the gap is unbounded in general.

Theorem (Dvořák)

For every G and d ∈ N, we have domd(G) 6 wcol2d(G)2 · scad(G).

Cor: Constant-factor gap in bounded expansion classes.

Proof: A greedy procedure on a vertex ordering witnessing wcol2d(G).

Michał Pilipczuk Sparse graphs 22 / 41

Hi�ing and packing duality

Cor: Constant-factor apx algorithm for domd(G) in bnd expansion classes.

− Compute σ with wcol2d(G, σ) bounded by a constant.

− Each v picks minσWReachd [G, σ, v].

− Output the picked vertices.

Obs: domd(G) is the hi�ing number for radius-d balls.

Def: Let scad(G) be the packing number for radius-d balls.

Obviously scad(G) 6 domd(G), but the gap is unbounded in general.

Theorem (Dvořák)

For every G and d ∈ N, we have domd(G) 6 wcol2d(G)2 · scad(G).

Cor: Constant-factor gap in bounded expansion classes.

Proof: A greedy procedure on a vertex ordering witnessing wcol2d(G).

Michał Pilipczuk Sparse graphs 22 / 41

Hi�ing and packing duality

Cor: Constant-factor apx algorithm for domd(G) in bnd expansion classes.

− Compute σ with wcol2d(G, σ) bounded by a constant.

− Each v picks minσWReachd [G, σ, v].

− Output the picked vertices.

Obs: domd(G) is the hi�ing number for radius-d balls.

Def: Let scad(G) be the packing number for radius-d balls.

Obviously scad(G) 6 domd(G), but the gap is unbounded in general.

Theorem (Dvořák)

For every G and d ∈ N, we have domd(G) 6 wcol2d(G)2 · scad(G).

Cor: Constant-factor gap in bounded expansion classes.

Proof: A greedy procedure on a vertex ordering witnessing wcol2d(G).

Michał Pilipczuk Sparse graphs 22 / 41

Hi�ing and packing duality

Cor: Constant-factor apx algorithm for domd(G) in bnd expansion classes.

− Compute σ with wcol2d(G, σ) bounded by a constant.

− Each v picks minσWReachd [G, σ, v].

− Output the picked vertices.

Obs: domd(G) is the hi�ing number for radius-d balls.

Def: Let scad(G) be the packing number for radius-d balls.

Obviously scad(G) 6 domd(G), but the gap is unbounded in general.

Theorem (Dvořák)

For every G and d ∈ N, we have domd(G) 6 wcol2d(G)2 · scad(G).

Cor: Constant-factor gap in bounded expansion classes.

Proof: A greedy procedure on a vertex ordering witnessing wcol2d(G).

Michał Pilipczuk Sparse graphs 22 / 41

Hi�ing and packing duality

Cor: Constant-factor apx algorithm for domd(G) in bnd expansion classes.

− Compute σ with wcol2d(G, σ) bounded by a constant.

− Each v picks minσWReachd [G, σ, v].

− Output the picked vertices.

Obs: domd(G) is the hi�ing number for radius-d balls.

Def: Let scad(G) be the packing number for radius-d balls.

Obviously scad(G) 6 domd(G), but the gap is unbounded in general.

Theorem (Dvořák)

For every G and d ∈ N, we have domd(G) 6 wcol2d(G)2 · scad(G).

Cor: Constant-factor gap in bounded expansion classes.

Proof: A greedy procedure on a vertex ordering witnessing wcol2d(G).

Michał Pilipczuk Sparse graphs 22 / 41

Hi�ing and packing duality

Cor: Constant-factor apx algorithm for domd(G) in bnd expansion classes.

− Compute σ with wcol2d(G, σ) bounded by a constant.

− Each v picks minσWReachd [G, σ, v].

− Output the picked vertices.

Obs: domd(G) is the hi�ing number for radius-d balls.

Def: Let scad(G) be the packing number for radius-d balls.

Obviously scad(G) 6 domd(G), but the gap is unbounded in general.

Theorem (Dvořák)

For every G and d ∈ N, we have domd(G) 6 wcol2d(G)2 · scad(G).

Cor: Constant-factor gap in bounded expansion classes.

Proof: A greedy procedure on a vertex ordering witnessing wcol2d(G).

Michał Pilipczuk Sparse graphs 22 / 41

Hi�ing and packing duality

Cor: Constant-factor apx algorithm for domd(G) in bnd expansion classes.

− Compute σ with wcol2d(G, σ) bounded by a constant.

− Each v picks minσWReachd [G, σ, v].

− Output the picked vertices.

Obs: domd(G) is the hi�ing number for radius-d balls.

Def: Let scad(G) be the packing number for radius-d balls.

Obviously scad(G) 6 domd(G), but the gap is unbounded in general.

Theorem (Dvořák)

For every G and d ∈ N, we have domd(G) 6 wcol2d(G)2 · scad(G).

Cor: Constant-factor gap in bounded expansion classes.

Proof: A greedy procedure on a vertex ordering witnessing wcol2d(G).

Michał Pilipczuk Sparse graphs 22 / 41

Part 3:

Treedepth and low treedepth colorings

Treedepth

Definition

Elimination forest of G is a rooted forest F with V (F) = V (G) s.t:

u, v adjacent in G ⇒ u, v in ancestor/descendant relation in F

td(G) := least possible depth of an elimination forest of G.

Basic remarks:

− If G is connected, then F must be a tree.

− H ⊆ G ⇒ td(H) 6 td(G)

− tw(G) 6 td(G) 6 tw(G) · log n

− td(G) = wcol∞(G)

Michał Pilipczuk Sparse graphs 23 / 41

Treedepth

Definition

Elimination forest of G is a rooted forest F with V (F) = V (G) s.t:

u, v adjacent in G ⇒ u, v in ancestor/descendant relation in F

td(G) := least possible depth of an elimination forest of G.

Basic remarks:

− If G is connected, then F must be a tree.

− H ⊆ G ⇒ td(H) 6 td(G)

− tw(G) 6 td(G) 6 tw(G) · log n

− td(G) = wcol∞(G)

Michał Pilipczuk Sparse graphs 23 / 41

Treedepth

Definition

Elimination forest of G is a rooted forest F with V (F) = V (G) s.t:

u, v adjacent in G ⇒ u, v in ancestor/descendant relation in F

td(G) := least possible depth of an elimination forest of G.

Basic remarks:

− If G is connected, then F must be a tree.

− H ⊆ G ⇒ td(H) 6 td(G)

− tw(G) 6 td(G) 6 tw(G) · log n

− td(G) = wcol∞(G)

Michał Pilipczuk Sparse graphs 23 / 41

Treedepth

Definition

Elimination forest of G is a rooted forest F with V (F) = V (G) s.t:

u, v adjacent in G ⇒ u, v in ancestor/descendant relation in F

td(G) := least possible depth of an elimination forest of G.

Basic remarks:

− If G is connected, then F must be a tree.

− H ⊆ G ⇒ td(H) 6 td(G)

− tw(G) 6 td(G) 6 tw(G) · log n

− td(G) = wcol∞(G)

Michał Pilipczuk Sparse graphs 23 / 41

Treedepth

Definition

Elimination forest of G is a rooted forest F with V (F) = V (G) s.t:

u, v adjacent in G ⇒ u, v in ancestor/descendant relation in F

td(G) := least possible depth of an elimination forest of G.

Basic remarks:

− If G is connected, then F must be a tree.

− H ⊆ G ⇒ td(H) 6 td(G)

− tw(G) 6 td(G) 6 tw(G) · log n

− td(G) = wcol∞(G)

Michał Pilipczuk Sparse graphs 23 / 41

Treedepth

Definition

Elimination forest of G is a rooted forest F with V (F) = V (G) s.t:

u, v adjacent in G ⇒ u, v in ancestor/descendant relation in F

td(G) := least possible depth of an elimination forest of G.

Basic remarks:

− If G is connected, then F must be a tree.

− H ⊆ G ⇒ td(H) 6 td(G)

− tw(G) 6 td(G) 6 tw(G) · log n

− td(G) = wcol∞(G)

Michał Pilipczuk Sparse graphs 23 / 41

Treedepth

Definition

Elimination forest of G is a rooted forest F with V (F) = V (G) s.t:

u, v adjacent in G ⇒ u, v in ancestor/descendant relation in F

td(G) := least possible depth of an elimination forest of G.

Basic remarks:

− If G is connected, then F must be a tree.

− H ⊆ G ⇒ td(H) 6 td(G)

− tw(G) 6 td(G) 6 tw(G) · log n

− td(G) = wcol∞(G)

Michał Pilipczuk Sparse graphs 23 / 41

Treedepth

Definition

Elimination forest of G is a rooted forest F with V (F) = V (G) s.t:

u, v adjacent in G ⇒ u, v in ancestor/descendant relation in F

td(G) := least possible depth of an elimination forest of G.

Basic remarks:

− If G is connected, then F must be a tree.

− H ⊆ G ⇒ td(H) 6 td(G)

− tw(G) 6 td(G) 6 tw(G) · log n

− td(G) = wcol∞(G)

Michał Pilipczuk Sparse graphs 23 / 41

Treedepth game

Consider the following one-player game played on a graph G in rounds:

− Each round: Remove one vertex from each connected component.

Fact. td(G) = min # rounds needed to eliminate the whole graph

(>): Eliminate elimination forest level by level.

(6): Elimination strategy yields an elimination forest.

1. Compute:

td(Kn) =

td(Pn) =

Michał Pilipczuk Sparse graphs 24 / 41

Treedepth game

Consider the following one-player game played on a graph G in rounds:

− Each round: Remove one vertex from each connected component.

Fact. td(G) = min # rounds needed to eliminate the whole graph

(>): Eliminate elimination forest level by level.

(6): Elimination strategy yields an elimination forest.

1. Compute:

td(Kn) =

td(Pn) =

Michał Pilipczuk Sparse graphs 24 / 41

Treedepth game

Consider the following one-player game played on a graph G in rounds:

− Each round: Remove one vertex from each connected component.

Fact. td(G) = min # rounds needed to eliminate the whole graph

(>): Eliminate elimination forest level by level.

(6): Elimination strategy yields an elimination forest.

1. Compute:

td(Kn) =

td(Pn) =

Michał Pilipczuk Sparse graphs 24 / 41

Treedepth game

Consider the following one-player game played on a graph G in rounds:

− Each round: Remove one vertex from each connected component.

Fact. td(G) = min # rounds needed to eliminate the whole graph

(>): Eliminate elimination forest level by level.

(6): Elimination strategy yields an elimination forest.

1. Compute:

td(Kn) =

td(Pn) =

Michał Pilipczuk Sparse graphs 24 / 41

Treedepth game

Consider the following one-player game played on a graph G in rounds:

− Each round: Remove one vertex from each connected component.

Fact. td(G) = min # rounds needed to eliminate the whole graph

(>): Eliminate elimination forest level by level.

(6): Elimination strategy yields an elimination forest.

1. Compute:

td(Kn) =

td(Pn) =

Michał Pilipczuk Sparse graphs 24 / 41

Treedepth game

Consider the following one-player game played on a graph G in rounds:

− Each round: Remove one vertex from each connected component.

Fact. td(G) = min # rounds needed to eliminate the whole graph

(>): Eliminate elimination forest level by level.

(6): Elimination strategy yields an elimination forest.

1. Compute:

td(Kn) =

td(Pn) =

Michał Pilipczuk Sparse graphs 24 / 41

Treedepth and bounded expansion

Intuition:

− Low td coloring: Decomposition of a graph into very simple pieces.

− very simple! bnd treedepth

− Thm: If C has bnd expansion,

then each G ∈ C has such a decomposition.

Fix C of bnd expansion, G ∈ C, and a parameter p ∈ N.

Let σ be a vertex ordering witnessing the value of wcol
2
p−1(G).

Let φ be the greedy coloring with wcol
2
p−1(G) colors s.t.:

For each v , φ(v) /∈ colors given to WReach
2
p−1(G) \ {v} by φ.

Michał Pilipczuk Sparse graphs 25 / 41

Treedepth and bounded expansion

Intuition:

− Low td coloring: Decomposition of a graph into very simple pieces.

− very simple! bnd treedepth

− Thm: If C has bnd expansion,

then each G ∈ C has such a decomposition.

Fix C of bnd expansion, G ∈ C, and a parameter p ∈ N.

Let σ be a vertex ordering witnessing the value of wcol
2
p−1(G).

Let φ be the greedy coloring with wcol
2
p−1(G) colors s.t.:

For each v , φ(v) /∈ colors given to WReach
2
p−1(G) \ {v} by φ.

Michał Pilipczuk Sparse graphs 25 / 41

Treedepth and bounded expansion

Intuition:

− Low td coloring: Decomposition of a graph into very simple pieces.

− very simple! bnd treedepth

− Thm: If C has bnd expansion,

then each G ∈ C has such a decomposition.

Fix C of bnd expansion, G ∈ C, and a parameter p ∈ N.

Let σ be a vertex ordering witnessing the value of wcol
2
p−1(G).

Let φ be the greedy coloring with wcol
2
p−1(G) colors s.t.:

For each v , φ(v) /∈ colors given to WReach
2
p−1(G) \ {v} by φ.

Michał Pilipczuk Sparse graphs 25 / 41

Treedepth and bounded expansion

Intuition:

− Low td coloring: Decomposition of a graph into very simple pieces.

− very simple! bnd treedepth

− Thm: If C has bnd expansion,

then each G ∈ C has such a decomposition.

Fix C of bnd expansion, G ∈ C, and a parameter p ∈ N.

Let σ be a vertex ordering witnessing the value of wcol
2
p−1(G).

Let φ be the greedy coloring with wcol
2
p−1(G) colors s.t.:

For each v , φ(v) /∈ colors given to WReach
2
p−1(G) \ {v} by φ.

Michał Pilipczuk Sparse graphs 25 / 41

Treedepth and bounded expansion

Intuition:

− Low td coloring: Decomposition of a graph into very simple pieces.

− very simple! bnd treedepth

− Thm: If C has bnd expansion,

then each G ∈ C has such a decomposition.

Fix C of bnd expansion, G ∈ C, and a parameter p ∈ N.

Let σ be a vertex ordering witnessing the value of wcol
2
p−1(G).

Let φ be the greedy coloring with wcol
2
p−1(G) colors s.t.:

For each v , φ(v) /∈ colors given to WReach
2
p−1(G) \ {v} by φ.

Michał Pilipczuk Sparse graphs 25 / 41

Treedepth and bounded expansion

Intuition:

− Low td coloring: Decomposition of a graph into very simple pieces.

− very simple! bnd treedepth

− Thm: If C has bnd expansion,

then each G ∈ C has such a decomposition.

Fix C of bnd expansion, G ∈ C, and a parameter p ∈ N.

Let σ be a vertex ordering witnessing the value of wcol
2
p−1(G).

Let φ be the greedy coloring with wcol
2
p−1(G) colors s.t.:

For each v , φ(v) /∈ colors given to WReach
2
p−1(G) \ {v} by φ.

Michał Pilipczuk Sparse graphs 25 / 41

Treedepth and bounded expansion

Intuition:

− Low td coloring: Decomposition of a graph into very simple pieces.

− very simple! bnd treedepth

− Thm: If C has bnd expansion,

then each G ∈ C has such a decomposition.

Fix C of bnd expansion, G ∈ C, and a parameter p ∈ N.

Let σ be a vertex ordering witnessing the value of wcol
2
p−1(G).

Let φ be the greedy coloring with wcol
2
p−1(G) colors s.t.:

For each v , φ(v) /∈ colors given to WReach
2
p−1(G) \ {v} by φ.

Michał Pilipczuk Sparse graphs 25 / 41

Constructing a low td coloring

1. P is a path on 2
p−1

vertices ⇒ P receives > p di�erent colors.

2. H ⊆ G is connected and receives 6 p colors ⇒
H has a vertex of unique color.

3. H ⊆ G receives 6 p colors ⇒ td(H) 6 p.

Michał Pilipczuk Sparse graphs 26 / 41

Low td colorings

Theorem (low td colorings)

Let C be a class of bnd expansion and p ∈ N. Then there is M(p) ∈ N

such that every G ∈ C has a coloring with M(p) colors satisfying:

Every p colors together induce a subgraph of treedepth 6 p.

Note: In our proof, M(p) = wcol
2
p−1(C).

Theorem (low td coverings)

Let C be a class of bnd expansion and p ∈ N. Then there is N(p) ∈ N

such that in every G ∈ C there are vertex subsets A1, . . . ,AN(p) satisfying:

− td(G[Ai]) 6 p for each i; and

− for each X ⊆ V (G) with |X | 6 p, there is Ai such that X ⊆ Ai.

Proof:

− {A1,A2, . . . ,AN(p)} = subsets of p colors.

− N(p) =
(M(p)

p

)

Michał Pilipczuk Sparse graphs 27 / 41

Low td colorings
Theorem (low td colorings)

Let C be a class of bnd expansion and p ∈ N. Then there is M(p) ∈ N

such that every G ∈ C has a coloring with M(p) colors satisfying:

Every p colors together induce a subgraph of treedepth 6 p.

Note: In our proof, M(p) = wcol
2
p−1(C).

Theorem (low td coverings)

Let C be a class of bnd expansion and p ∈ N. Then there is N(p) ∈ N

such that in every G ∈ C there are vertex subsets A1, . . . ,AN(p) satisfying:

− td(G[Ai]) 6 p for each i; and

− for each X ⊆ V (G) with |X | 6 p, there is Ai such that X ⊆ Ai.

Proof:

− {A1,A2, . . . ,AN(p)} = subsets of p colors.

− N(p) =
(M(p)

p

)

Michał Pilipczuk Sparse graphs 27 / 41

Low td colorings
Theorem (low td colorings)

Let C be a class of bnd expansion and p ∈ N. Then there is M(p) ∈ N

such that every G ∈ C has a coloring with M(p) colors satisfying:

Every p colors together induce a subgraph of treedepth 6 p.

Note: In our proof, M(p) = wcol
2
p−1(C).

Theorem (low td coverings)

Let C be a class of bnd expansion and p ∈ N. Then there is N(p) ∈ N

such that in every G ∈ C there are vertex subsets A1, . . . ,AN(p) satisfying:

− td(G[Ai]) 6 p for each i; and

− for each X ⊆ V (G) with |X | 6 p, there is Ai such that X ⊆ Ai.

Proof:

− {A1,A2, . . . ,AN(p)} = subsets of p colors.

− N(p) =
(M(p)

p

)

Michał Pilipczuk Sparse graphs 27 / 41

Low td colorings
Theorem (low td colorings)

Let C be a class of bnd expansion and p ∈ N. Then there is M(p) ∈ N

such that every G ∈ C has a coloring with M(p) colors satisfying:

Every p colors together induce a subgraph of treedepth 6 p.

Note: In our proof, M(p) = wcol
2
p−1(C).

Theorem (low td coverings)

Let C be a class of bnd expansion and p ∈ N. Then there is N(p) ∈ N

such that in every G ∈ C there are vertex subsets A1, . . . ,AN(p) satisfying:

− td(G[Ai]) 6 p for each i; and

− for each X ⊆ V (G) with |X | 6 p, there is Ai such that X ⊆ Ai.

Proof:

− {A1,A2, . . . ,AN(p)} = subsets of p colors.

− N(p) =
(M(p)

p

)

Michał Pilipczuk Sparse graphs 27 / 41

Low td colorings
Theorem (low td colorings)

Let C be a class of bnd expansion and p ∈ N. Then there is M(p) ∈ N

such that every G ∈ C has a coloring with M(p) colors satisfying:

Every p colors together induce a subgraph of treedepth 6 p.

Note: In our proof, M(p) = wcol
2
p−1(C).

Theorem (low td coverings)

Let C be a class of bnd expansion and p ∈ N. Then there is N(p) ∈ N

such that in every G ∈ C there are vertex subsets A1, . . . ,AN(p) satisfying:

− td(G[Ai]) 6 p for each i; and

− for each X ⊆ V (G) with |X | 6 p, there is Ai such that X ⊆ Ai.

Proof:

− {A1,A2, . . . ,AN(p)} = subsets of p colors.

− N(p) =
(M(p)

p

)

Michał Pilipczuk Sparse graphs 27 / 41

Low td colorings
Theorem (low td colorings)

Let C be a class of bnd expansion and p ∈ N. Then there is M(p) ∈ N

such that every G ∈ C has a coloring with M(p) colors satisfying:

Every p colors together induce a subgraph of treedepth 6 p.

Note: In our proof, M(p) = wcol
2
p−1(C).

Theorem (low td coverings)

Let C be a class of bnd expansion and p ∈ N. Then there is N(p) ∈ N

such that in every G ∈ C there are vertex subsets A1, . . . ,AN(p) satisfying:

− td(G[Ai]) 6 p for each i; and

− for each X ⊆ V (G) with |X | 6 p, there is Ai such that X ⊆ Ai.

Proof:

− {A1,A2, . . . ,AN(p)} = subsets of p colors.

− N(p) =
(M(p)

p

)

Michał Pilipczuk Sparse graphs 27 / 41

Low td colorings
Theorem (low td colorings)

Let C be a class of bnd expansion and p ∈ N. Then there is M(p) ∈ N

such that every G ∈ C has a coloring with M(p) colors satisfying:

Every p colors together induce a subgraph of treedepth 6 p.

Note: In our proof, M(p) = wcol
2
p−1(C).

Theorem (low td coverings)

Let C be a class of bnd expansion and p ∈ N. Then there is N(p) ∈ N

such that in every G ∈ C there are vertex subsets A1, . . . ,AN(p) satisfying:

− td(G[Ai]) 6 p for each i; and

− for each X ⊆ V (G) with |X | 6 p, there is Ai such that X ⊆ Ai.

Proof:

− {A1,A2, . . . ,AN(p)} = subsets of p colors.

− N(p) =
(M(p)

p

)
Michał Pilipczuk Sparse graphs 27 / 41

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V (Q)|. (Imagine p = 50)

Trivial: running time O(|V (G)|p).

− In general, running time |V (G)|o(p) is unlikely.

Supposing G ∈ C where C has bnd expansion, we can do as follows:

− Compute a treedepth-p cover A1, . . . ,AN(p) of G.

− For each i, test if Q ⊆ G[Ai] by dynamic programming in linear time.

− Obs: Q ⊆ G ⇔ Q ⊆ G[Ai] for some i.

Cor: A linear-time algorithm testing whether Q ⊆ G.

Michał Pilipczuk Sparse graphs 28 / 41

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V (Q)|. (Imagine p = 50)

Trivial: running time O(|V (G)|p).

− In general, running time |V (G)|o(p) is unlikely.

Supposing G ∈ C where C has bnd expansion, we can do as follows:

− Compute a treedepth-p cover A1, . . . ,AN(p) of G.

− For each i, test if Q ⊆ G[Ai] by dynamic programming in linear time.

− Obs: Q ⊆ G ⇔ Q ⊆ G[Ai] for some i.

Cor: A linear-time algorithm testing whether Q ⊆ G.

Michał Pilipczuk Sparse graphs 28 / 41

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V (Q)|. (Imagine p = 50)

Trivial: running time O(|V (G)|p).

− In general, running time |V (G)|o(p) is unlikely.

Supposing G ∈ C where C has bnd expansion, we can do as follows:

− Compute a treedepth-p cover A1, . . . ,AN(p) of G.

− For each i, test if Q ⊆ G[Ai] by dynamic programming in linear time.

− Obs: Q ⊆ G ⇔ Q ⊆ G[Ai] for some i.

Cor: A linear-time algorithm testing whether Q ⊆ G.

Michał Pilipczuk Sparse graphs 28 / 41

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V (Q)|. (Imagine p = 50)

Trivial: running time O(|V (G)|p).

− In general, running time |V (G)|o(p) is unlikely.

Supposing G ∈ C where C has bnd expansion, we can do as follows:

− Compute a treedepth-p cover A1, . . . ,AN(p) of G.

− For each i, test if Q ⊆ G[Ai] by dynamic programming in linear time.

− Obs: Q ⊆ G ⇔ Q ⊆ G[Ai] for some i.

Cor: A linear-time algorithm testing whether Q ⊆ G.

Michał Pilipczuk Sparse graphs 28 / 41

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V (Q)|. (Imagine p = 50)

Trivial: running time O(|V (G)|p).

− In general, running time |V (G)|o(p) is unlikely.

Supposing G ∈ C where C has bnd expansion, we can do as follows:

− Compute a treedepth-p cover A1, . . . ,AN(p) of G.

− For each i, test if Q ⊆ G[Ai] by dynamic programming in linear time.

− Obs: Q ⊆ G ⇔ Q ⊆ G[Ai] for some i.

Cor: A linear-time algorithm testing whether Q ⊆ G.

Michał Pilipczuk Sparse graphs 28 / 41

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V (Q)|. (Imagine p = 50)

Trivial: running time O(|V (G)|p).

− In general, running time |V (G)|o(p) is unlikely.

Supposing G ∈ C where C has bnd expansion, we can do as follows:

− Compute a treedepth-p cover A1, . . . ,AN(p) of G.

− For each i, test if Q ⊆ G[Ai] by dynamic programming in linear time.

− Obs: Q ⊆ G ⇔ Q ⊆ G[Ai] for some i.

Cor: A linear-time algorithm testing whether Q ⊆ G.

Michał Pilipczuk Sparse graphs 28 / 41

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V (Q)|. (Imagine p = 50)

Trivial: running time O(|V (G)|p).

− In general, running time |V (G)|o(p) is unlikely.

Supposing G ∈ C where C has bnd expansion, we can do as follows:

− Compute a treedepth-p cover A1, . . . ,AN(p) of G.

− For each i, test if Q ⊆ G[Ai] by dynamic programming in linear time.

− Obs: Q ⊆ G ⇔ Q ⊆ G[Ai] for some i.

Cor: A linear-time algorithm testing whether Q ⊆ G.

Michał Pilipczuk Sparse graphs 28 / 41

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V (Q)|. (Imagine p = 50)

Trivial: running time O(|V (G)|p).

− In general, running time |V (G)|o(p) is unlikely.

Supposing G ∈ C where C has bnd expansion, we can do as follows:

− Compute a treedepth-p cover A1, . . . ,AN(p) of G.

− For each i, test if Q ⊆ G[Ai] by dynamic programming in linear time.

− Obs: Q ⊆ G ⇔ Q ⊆ G[Ai] for some i.

Cor: A linear-time algorithm testing whether Q ⊆ G.

Michał Pilipczuk Sparse graphs 28 / 41

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V (Q)|. (Imagine p = 50)

Trivial: running time O(|V (G)|p).

− In general, running time |V (G)|o(p) is unlikely.

Supposing G ∈ C where C has bnd expansion, we can do as follows:

− Compute a treedepth-p cover A1, . . . ,AN(p) of G.

− For each i, test if Q ⊆ G[Ai] by dynamic programming in linear time.

− Obs: Q ⊆ G ⇔ Q ⊆ G[Ai] for some i.

Cor: A linear-time algorithm testing whether Q ⊆ G.

Michał Pilipczuk Sparse graphs 28 / 41

Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V (Q)|. (Imagine p = 50)

Trivial: running time O(|V (G)|p).

− In general, running time |V (G)|o(p) is unlikely.

Supposing G ∈ C where C has bnd expansion, we can do as follows:

− Compute a treedepth-p cover A1, . . . ,AN(p) of G.

− For each i, test if Q ⊆ G[Ai] by dynamic programming in linear time.

− Obs: Q ⊆ G ⇔ Q ⊆ G[Ai] for some i.

Cor: A linear-time algorithm testing whether Q ⊆ G.

Michał Pilipczuk Sparse graphs 28 / 41

Combinatorial application

Theorem

Let C be a class of bnd expansion and d ∈ N be odd. Then there is

L(d) ∈ N such that every G ∈ C has a coloring φ with L(d) colors satisfying:

dist(u, v) = d ⇒ φ(u) 6= φ(v).

Lemma

If td(G) = p, then G has a coloring with 2
p − 1 colors such that

dist(u, v) is odd ⇒ φ(u) 6= φ(v).

Lemma⇒ Theorem:

− Let {A1, . . . ,AN(d+1)} be a treedepth-(d + 1) covering of G.

− Color each G[Ai] using Lemma with 2
d+1 − 1 colors.

− Construct the product coloring.

− L(d) =
(
2
d+1

)N(d+1)
.

− Obs: A u-to-v path of length d is entirely contained in some G[Ai].

Michał Pilipczuk Sparse graphs 29 / 41

Combinatorial application
Theorem

Let C be a class of bnd expansion and d ∈ N be odd. Then there is

L(d) ∈ N such that every G ∈ C has a coloring φ with L(d) colors satisfying:

dist(u, v) = d ⇒ φ(u) 6= φ(v).

Lemma

If td(G) = p, then G has a coloring with 2
p − 1 colors such that

dist(u, v) is odd ⇒ φ(u) 6= φ(v).

Lemma⇒ Theorem:

− Let {A1, . . . ,AN(d+1)} be a treedepth-(d + 1) covering of G.

− Color each G[Ai] using Lemma with 2
d+1 − 1 colors.

− Construct the product coloring.

− L(d) =
(
2
d+1

)N(d+1)
.

− Obs: A u-to-v path of length d is entirely contained in some G[Ai].

Michał Pilipczuk Sparse graphs 29 / 41

Combinatorial application
Theorem

Let C be a class of bnd expansion and d ∈ N be odd. Then there is

L(d) ∈ N such that every G ∈ C has a coloring φ with L(d) colors satisfying:

dist(u, v) = d ⇒ φ(u) 6= φ(v).

Lemma

If td(G) = p, then G has a coloring with 2
p − 1 colors such that

dist(u, v) is odd ⇒ φ(u) 6= φ(v).

Lemma⇒ Theorem:

− Let {A1, . . . ,AN(d+1)} be a treedepth-(d + 1) covering of G.

− Color each G[Ai] using Lemma with 2
d+1 − 1 colors.

− Construct the product coloring.

− L(d) =
(
2
d+1

)N(d+1)
.

− Obs: A u-to-v path of length d is entirely contained in some G[Ai].

Michał Pilipczuk Sparse graphs 29 / 41

Combinatorial application
Theorem

Let C be a class of bnd expansion and d ∈ N be odd. Then there is

L(d) ∈ N such that every G ∈ C has a coloring φ with L(d) colors satisfying:

dist(u, v) = d ⇒ φ(u) 6= φ(v).

Lemma

If td(G) = p, then G has a coloring with 2
p − 1 colors such that

dist(u, v) is odd ⇒ φ(u) 6= φ(v).

Lemma⇒ Theorem:

− Let {A1, . . . ,AN(d+1)} be a treedepth-(d + 1) covering of G.

− Color each G[Ai] using Lemma with 2
d+1 − 1 colors.

− Construct the product coloring.

− L(d) =
(
2
d+1

)N(d+1)
.

− Obs: A u-to-v path of length d is entirely contained in some G[Ai].

Michał Pilipczuk Sparse graphs 29 / 41

Combinatorial application
Theorem

Let C be a class of bnd expansion and d ∈ N be odd. Then there is

L(d) ∈ N such that every G ∈ C has a coloring φ with L(d) colors satisfying:

dist(u, v) = d ⇒ φ(u) 6= φ(v).

Lemma

If td(G) = p, then G has a coloring with 2
p − 1 colors such that

dist(u, v) is odd ⇒ φ(u) 6= φ(v).

Lemma⇒ Theorem:

− Let {A1, . . . ,AN(d+1)} be a treedepth-(d + 1) covering of G.

− Color each G[Ai] using Lemma with 2
d+1 − 1 colors.

− Construct the product coloring.

− L(d) =
(
2
d+1

)N(d+1)
.

− Obs: A u-to-v path of length d is entirely contained in some G[Ai].

Michał Pilipczuk Sparse graphs 29 / 41

Combinatorial application
Theorem

Let C be a class of bnd expansion and d ∈ N be odd. Then there is

L(d) ∈ N such that every G ∈ C has a coloring φ with L(d) colors satisfying:

dist(u, v) = d ⇒ φ(u) 6= φ(v).

Lemma

If td(G) = p, then G has a coloring with 2
p − 1 colors such that

dist(u, v) is odd ⇒ φ(u) 6= φ(v).

Lemma⇒ Theorem:

− Let {A1, . . . ,AN(d+1)} be a treedepth-(d + 1) covering of G.

− Color each G[Ai] using Lemma with 2
d+1 − 1 colors.

− Construct the product coloring.

− L(d) =
(
2
d+1

)N(d+1)
.

− Obs: A u-to-v path of length d is entirely contained in some G[Ai].

Michał Pilipczuk Sparse graphs 29 / 41

Combinatorial application
Theorem

Let C be a class of bnd expansion and d ∈ N be odd. Then there is

L(d) ∈ N such that every G ∈ C has a coloring φ with L(d) colors satisfying:

dist(u, v) = d ⇒ φ(u) 6= φ(v).

Lemma

If td(G) = p, then G has a coloring with 2
p − 1 colors such that

dist(u, v) is odd ⇒ φ(u) 6= φ(v).

Lemma⇒ Theorem:

− Let {A1, . . . ,AN(d+1)} be a treedepth-(d + 1) covering of G.

− Color each G[Ai] using Lemma with 2
d+1 − 1 colors.

− Construct the product coloring.

− L(d) =
(
2
d+1

)N(d+1)
.

− Obs: A u-to-v path of length d is entirely contained in some G[Ai].

Michał Pilipczuk Sparse graphs 29 / 41

Combinatorial application
Theorem

Let C be a class of bnd expansion and d ∈ N be odd. Then there is

L(d) ∈ N such that every G ∈ C has a coloring φ with L(d) colors satisfying:

dist(u, v) = d ⇒ φ(u) 6= φ(v).

Lemma

If td(G) = p, then G has a coloring with 2
p − 1 colors such that

dist(u, v) is odd ⇒ φ(u) 6= φ(v).

Lemma⇒ Theorem:

− Let {A1, . . . ,AN(d+1)} be a treedepth-(d + 1) covering of G.

− Color each G[Ai] using Lemma with 2
d+1 − 1 colors.

− Construct the product coloring.

− L(d) =
(
2
d+1

)N(d+1)
.

− Obs: A u-to-v path of length d is entirely contained in some G[Ai].

Michał Pilipczuk Sparse graphs 29 / 41

Combinatorial application
Theorem

Let C be a class of bnd expansion and d ∈ N be odd. Then there is

L(d) ∈ N such that every G ∈ C has a coloring φ with L(d) colors satisfying:

dist(u, v) = d ⇒ φ(u) 6= φ(v).

Lemma

If td(G) = p, then G has a coloring with 2
p − 1 colors such that

dist(u, v) is odd ⇒ φ(u) 6= φ(v).

Lemma⇒ Theorem:

− Let {A1, . . . ,AN(d+1)} be a treedepth-(d + 1) covering of G.

− Color each G[Ai] using Lemma with 2
d+1 − 1 colors.

− Construct the product coloring.

− L(d) =
(
2
d+1

)N(d+1)
.

− Obs: A u-to-v path of length d is entirely contained in some G[Ai].

Michał Pilipczuk Sparse graphs 29 / 41

Structural measures: summary

Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41

Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41

Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41

Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41

Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41

Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41

Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41

Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41

Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41

Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41

Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41

Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41

Part 4:

Uniform quasi-wideness and ladders

Wideness in graphs
Int: In a huge sparse graph, there are many vertices that are

pairwise far from each other.

Wrong: a star.

Int: In a huge sparse graph, one can remove few vertices so that

there are many vertices that are pairwise far from each other.

A |A| > Nd(m)

B |B| > m

S |S| 6 sd

Definition (Uniform quasi-wideness)

A class C is uqw if for every d ∈ N there exist sd ∈ N and Nd : N→ N s.t.

for every G ∈ C, m ∈ N, and A ⊆ V (G) satisfying |A| > Nd(m),

there exists S ⊆ V (G) and B ⊆ A− S such that

− |S| 6 sd ; and

− |B| > m and distG−S(u, v) > d for all distinct u, v ∈ B.

Michał Pilipczuk Sparse graphs 31 / 41

Wideness in graphs
Int: In a huge sparse graph, there are many vertices that are

pairwise far from each other.

Wrong: a star.

Int: In a huge sparse graph, one can remove few vertices so that

there are many vertices that are pairwise far from each other.

A |A| > Nd(m)

B |B| > m

S |S| 6 sd

Definition (Uniform quasi-wideness)

A class C is uqw if for every d ∈ N there exist sd ∈ N and Nd : N→ N s.t.

for every G ∈ C, m ∈ N, and A ⊆ V (G) satisfying |A| > Nd(m),

there exists S ⊆ V (G) and B ⊆ A− S such that

− |S| 6 sd ; and

− |B| > m and distG−S(u, v) > d for all distinct u, v ∈ B.

Michał Pilipczuk Sparse graphs 31 / 41

Wideness in graphs
Int: In a huge sparse graph, there are many vertices that are

pairwise far from each other.

Wrong: a star.

Int: In a huge sparse graph, one can remove few vertices so that

there are many vertices that are pairwise far from each other.

A |A| > Nd(m)

B |B| > m

S |S| 6 sd

Definition (Uniform quasi-wideness)

A class C is uqw if for every d ∈ N there exist sd ∈ N and Nd : N→ N s.t.

for every G ∈ C, m ∈ N, and A ⊆ V (G) satisfying |A| > Nd(m),

there exists S ⊆ V (G) and B ⊆ A− S such that

− |S| 6 sd ; and

− |B| > m and distG−S(u, v) > d for all distinct u, v ∈ B.

Michał Pilipczuk Sparse graphs 31 / 41

Wideness in graphs

Int: In a huge sparse graph, there are many vertices that are

pairwise far from each other.

Wrong: a star.

Int: In a huge sparse graph, one can remove few vertices so that

there are many vertices that are pairwise far from each other.

A |A| > Nd(m)

B |B| > m

S |S| 6 sd

Definition (Uniform quasi-wideness)

A class C is uqw if for every d ∈ N there exist sd ∈ N and Nd : N→ N s.t.

for every G ∈ C, m ∈ N, and A ⊆ V (G) satisfying |A| > Nd(m),

there exists S ⊆ V (G) and B ⊆ A− S such that

− |S| 6 sd ; and

− |B| > m and distG−S(u, v) > d for all distinct u, v ∈ B.

Michał Pilipczuk Sparse graphs 31 / 41

Wideness in graphs

Int: In a huge sparse graph, there are many vertices that are

pairwise far from each other.

Wrong: a star.

Int: In a huge sparse graph, one can remove few vertices so that

there are many vertices that are pairwise far from each other.

A |A| > Nd(m)

B |B| > m

S |S| 6 sd

Definition (Uniform quasi-wideness)

A class C is uqw if for every d ∈ N there exist sd ∈ N and Nd : N→ N s.t.

for every G ∈ C, m ∈ N, and A ⊆ V (G) satisfying |A| > Nd(m),

there exists S ⊆ V (G) and B ⊆ A− S such that

− |S| 6 sd ; and

− |B| > m and distG−S(u, v) > d for all distinct u, v ∈ B.

Michał Pilipczuk Sparse graphs 31 / 41

Wideness in graphs

Int: In a huge sparse graph, there are many vertices that are

pairwise far from each other.

Wrong: a star.

Int: In a huge sparse graph, one can remove few vertices so that

there are many vertices that are pairwise far from each other.

A |A| > Nd(m)

B |B| > m

S |S| 6 sd

Definition (Uniform quasi-wideness)

A class C is uqw if for every d ∈ N there exist sd ∈ N and Nd : N→ N s.t.

for every G ∈ C, m ∈ N, and A ⊆ V (G) satisfying |A| > Nd(m),

there exists S ⊆ V (G) and B ⊆ A− S such that

− |S| 6 sd ; and

− |B| > m and distG−S(u, v) > d for all distinct u, v ∈ B.

Michał Pilipczuk Sparse graphs 31 / 41

Wideness in graphs

Int: In a huge sparse graph, there are many vertices that are

pairwise far from each other.

Wrong: a star.

Int: In a huge sparse graph, one can remove few vertices so that

there are many vertices that are pairwise far from each other.

A |A| > Nd(m)

B |B| > m

S |S| 6 sd

Definition (Uniform quasi-wideness)

A class C is uqw if for every d ∈ N there exist sd ∈ N and Nd : N→ N s.t.

for every G ∈ C, m ∈ N, and A ⊆ V (G) satisfying |A| > Nd(m),

there exists S ⊆ V (G) and B ⊆ A− S such that

− |S| 6 sd ; and

− |B| > m and distG−S(u, v) > d for all distinct u, v ∈ B.

Michał Pilipczuk Sparse graphs 31 / 41

Wideness in graphs

Int: In a huge sparse graph, there are many vertices that are

pairwise far from each other.

Wrong: a star.

Int: In a huge sparse graph, one can remove few vertices so that

there are many vertices that are pairwise far from each other.

A |A| > Nd(m)

B |B| > m

S |S| 6 sd

Definition (Uniform quasi-wideness)

A class C is uqw if for every d ∈ N there exist sd ∈ N and Nd : N→ N s.t.

for every G ∈ C, m ∈ N, and A ⊆ V (G) satisfying |A| > Nd(m),

there exists S ⊆ V (G) and B ⊆ A− S such that

− |S| 6 sd ; and

− |B| > m and distG−S(u, v) > d for all distinct u, v ∈ B.

Michał Pilipczuk Sparse graphs 31 / 41

Wideness in graphs

Int: In a huge sparse graph, there are many vertices that are

pairwise far from each other.

Wrong: a star.

Int: In a huge sparse graph, one can remove few vertices so that

there are many vertices that are pairwise far from each other.

A |A| > Nd(m)

B |B| > m

S |S| 6 sd

Definition (Uniform quasi-wideness)

A class C is uqw if for every d ∈ N there exist sd ∈ N and Nd : N→ N s.t.

for every G ∈ C, m ∈ N, and A ⊆ V (G) satisfying |A| > Nd(m),

there exists S ⊆ V (G) and B ⊆ A− S such that

− |S| 6 sd ; and

− |B| > m and distG−S(u, v) > d for all distinct u, v ∈ B.

Michał Pilipczuk Sparse graphs 31 / 41

Wideness in graphs

Int: In a huge sparse graph, there are many vertices that are

pairwise far from each other.

Wrong: a star.

Int: In a huge sparse graph, one can remove few vertices so that

there are many vertices that are pairwise far from each other.

A |A| > Nd(m)

B |B| > m

S |S| 6 sd

Definition (Uniform quasi-wideness)

A class C is uqw if for every d ∈ N there exist sd ∈ N and Nd : N→ N s.t.

for every G ∈ C, m ∈ N, and A ⊆ V (G) satisfying |A| > Nd(m),

there exists S ⊆ V (G) and B ⊆ A− S such that

− |S| 6 sd ; and

− |B| > m and distG−S(u, v) > d for all distinct u, v ∈ B.

Michał Pilipczuk Sparse graphs 31 / 41

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41

Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41

Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41

Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41

Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41

Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41

Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41

Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41

Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41

Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41

Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.

If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41

Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41

Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41

Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed
Michał Pilipczuk Sparse graphs 33 / 41

Analysis

The ith iteration can be performed in time f (k, i) · ‖G‖.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates a�er at most c · kc rounds, where c is a constant

that depends only on C and d .

Cor: A linear-time fixed-parameter algorithm.

− Running time f (k) · ‖G‖, where f depends on C and d .

Intuition:

− The algorithms gradually gathers di�icult witnesses.

− Eventually, domination of the witnesses forces domination of G.

Now: Proof of the Lemma for k = 1.

Michał Pilipczuk Sparse graphs 34 / 41

Analysis

The ith iteration can be performed in time f (k, i) · ‖G‖.

Why the number of iterations should be bounded?

Lemma

The Algorithm terminates a�er at most c · kc rounds, where c is a constant

that depends only on C and d .

Cor: A linear-time fixed-parameter algorithm.

− Running time f (k) · ‖G‖, where f depends on C and d .

Intuition:

− The algorithms gradually gathers di�icult witnesses.

− Eventually, domination of the witnesses forces domination of G.

Now: Proof of the Lemma for k = 1.

Michał Pilipczuk Sparse graphs 34 / 41

Analysis

The ith iteration can be performed in time f (k, i) · ‖G‖.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates a�er at most c · kc rounds, where c is a constant

that depends only on C and d .

Cor: A linear-time fixed-parameter algorithm.

− Running time f (k) · ‖G‖, where f depends on C and d .

Intuition:

− The algorithms gradually gathers di�icult witnesses.

− Eventually, domination of the witnesses forces domination of G.

Now: Proof of the Lemma for k = 1.

Michał Pilipczuk Sparse graphs 34 / 41

Analysis

The ith iteration can be performed in time f (k, i) · ‖G‖.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates a�er at most c · kc rounds, where c is a constant

that depends only on C and d .

Cor: A linear-time fixed-parameter algorithm.

− Running time f (k) · ‖G‖, where f depends on C and d .

Intuition:

− The algorithms gradually gathers di�icult witnesses.

− Eventually, domination of the witnesses forces domination of G.

Now: Proof of the Lemma for k = 1.

Michał Pilipczuk Sparse graphs 34 / 41

Analysis

The ith iteration can be performed in time f (k, i) · ‖G‖.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates a�er at most c · kc rounds, where c is a constant

that depends only on C and d .

Cor: A linear-time fixed-parameter algorithm.

− Running time f (k) · ‖G‖, where f depends on C and d .

Intuition:

− The algorithms gradually gathers di�icult witnesses.

− Eventually, domination of the witnesses forces domination of G.

Now: Proof of the Lemma for k = 1.

Michał Pilipczuk Sparse graphs 34 / 41

Analysis

The ith iteration can be performed in time f (k, i) · ‖G‖.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates a�er at most c · kc rounds, where c is a constant

that depends only on C and d .

Cor: A linear-time fixed-parameter algorithm.

− Running time f (k) · ‖G‖, where f depends on C and d .

Intuition:

− The algorithms gradually gathers di�icult witnesses.

− Eventually, domination of the witnesses forces domination of G.

Now: Proof of the Lemma for k = 1.

Michał Pilipczuk Sparse graphs 34 / 41

Analysis

The ith iteration can be performed in time f (k, i) · ‖G‖.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates a�er at most c · kc rounds, where c is a constant

that depends only on C and d .

Cor: A linear-time fixed-parameter algorithm.

− Running time f (k) · ‖G‖, where f depends on C and d .

Intuition:

− The algorithms gradually gathers di�icult witnesses.

− Eventually, domination of the witnesses forces domination of G.

Now: Proof of the Lemma for k = 1.

Michał Pilipczuk Sparse graphs 34 / 41

Analysis

The ith iteration can be performed in time f (k, i) · ‖G‖.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates a�er at most c · kc rounds, where c is a constant

that depends only on C and d .

Cor: A linear-time fixed-parameter algorithm.

− Running time f (k) · ‖G‖, where f depends on C and d .

Intuition:

− The algorithms gradually gathers di�icult witnesses.

− Eventually, domination of the witnesses forces domination of G.

Now: Proof of the Lemma for k = 1.

Michał Pilipczuk Sparse graphs 34 / 41

Analysis

The ith iteration can be performed in time f (k, i) · ‖G‖.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates a�er at most c · kc rounds, where c is a constant

that depends only on C and d .

Cor: A linear-time fixed-parameter algorithm.

− Running time f (k) · ‖G‖, where f depends on C and d .

Intuition:

− The algorithms gradually gathers di�icult witnesses.

− Eventually, domination of the witnesses forces domination of G.

Now: Proof of the Lemma for k = 1.

Michał Pilipczuk Sparse graphs 34 / 41

Analysis

The ith iteration can be performed in time f (k, i) · ‖G‖.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates a�er at most c · kc rounds, where c is a constant

that depends only on C and d .

Cor: A linear-time fixed-parameter algorithm.

− Running time f (k) · ‖G‖, where f depends on C and d .

Intuition:

− The algorithms gradually gathers di�icult witnesses.

− Eventually, domination of the witnesses forces domination of G.

Now: Proof of the Lemma for k = 1.

Michał Pilipczuk Sparse graphs 34 / 41

Semi-ladders

A�er ` rounds, the Algorithm has constructed a semi-ladder of order `.

− Two sequences of vertices: a1, . . . , a` and b1, . . . , b`.

− For each i, we have dist(ai, bi) > d .

− For each j < i, we have dist(ai, bj) 6 d .

Suppose ` > N(2(d + 1)s), where N(·) = N2d(·) and s := s2d .

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

Michał Pilipczuk Sparse graphs 35 / 41

Semi-ladders

A�er ` rounds, the Algorithm has constructed a semi-ladder of order `.

− Two sequences of vertices: a1, . . . , a` and b1, . . . , b`.

− For each i, we have dist(ai, bi) > d .

− For each j < i, we have dist(ai, bj) 6 d .

Suppose ` > N(2(d + 1)s), where N(·) = N2d(·) and s := s2d .

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

Michał Pilipczuk Sparse graphs 35 / 41

Semi-ladders

A�er ` rounds, the Algorithm has constructed a semi-ladder of order `.

− Two sequences of vertices: a1, . . . , a` and b1, . . . , b`.

− For each i, we have dist(ai, bi) > d .

− For each j < i, we have dist(ai, bj) 6 d .

Suppose ` > N(2(d + 1)s), where N(·) = N2d(·) and s := s2d .

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

Michał Pilipczuk Sparse graphs 35 / 41

Semi-ladders

A�er ` rounds, the Algorithm has constructed a semi-ladder of order `.

− Two sequences of vertices: a1, . . . , a` and b1, . . . , b`.

− For each i, we have dist(ai, bi) > d .

− For each j < i, we have dist(ai, bj) 6 d .

Suppose ` > N(2(d + 1)s), where N(·) = N2d(·) and s := s2d .

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

Michał Pilipczuk Sparse graphs 35 / 41

Semi-ladders

A�er ` rounds, the Algorithm has constructed a semi-ladder of order `.

− Two sequences of vertices: a1, . . . , a` and b1, . . . , b`.

− For each i, we have dist(ai, bi) > d .

− For each j < i, we have dist(ai, bj) 6 d .

Suppose ` > N(2(d + 1)s), where N(·) = N2d(·) and s := s2d .

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

Michał Pilipczuk Sparse graphs 35 / 41

Semi-ladders
From uqw we get:

− set S satisfying |S| 6 s; and

− B ⊆ {b1, . . . , b`} s.t. |B| > 2(d + 1)s and distG−S(bi, bj) > 2d for bi, bj ∈ B.

For bi ∈ B, let πi : S → {1, . . . , d,∞} be its distance-d profile on S:

πi(v) =

{
dist(bi, v) if 6 d ;
∞ otherwise.

Only (d + 1)s possible profiles ⇒ ∃ bx , by, bz with same profile.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

6

1
0

∞

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

Michał Pilipczuk Sparse graphs 36 / 41

Semi-ladders
From uqw we get:

− set S satisfying |S| 6 s; and

− B ⊆ {b1, . . . , b`} s.t. |B| > 2(d + 1)s and distG−S(bi, bj) > 2d for bi, bj ∈ B.

For bi ∈ B, let πi : S → {1, . . . , d,∞} be its distance-d profile on S:

πi(v) =

{
dist(bi, v) if 6 d ;
∞ otherwise.

Only (d + 1)s possible profiles ⇒ ∃ bx , by, bz with same profile.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

6

1
0

∞

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

Michał Pilipczuk Sparse graphs 36 / 41

Semi-ladders
From uqw we get:

− set S satisfying |S| 6 s; and

− B ⊆ {b1, . . . , b`} s.t. |B| > 2(d + 1)s and distG−S(bi, bj) > 2d for bi, bj ∈ B.

For bi ∈ B, let πi : S → {1, . . . , d,∞} be its distance-d profile on S:

πi(v) =

{
dist(bi, v) if 6 d ;
∞ otherwise.

Only (d + 1)s possible profiles ⇒ ∃ bx , by, bz with same profile.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

6

1
0

∞

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

Michał Pilipczuk Sparse graphs 36 / 41

Semi-ladders
From uqw we get:

− set S satisfying |S| 6 s; and

− B ⊆ {b1, . . . , b`} s.t. |B| > 2(d + 1)s and distG−S(bi, bj) > 2d for bi, bj ∈ B.

For bi ∈ B, let πi : S → {1, . . . , d,∞} be its distance-d profile on S:

πi(v) =

{
dist(bi, v) if 6 d ;
∞ otherwise.

Only (d + 1)s possible profiles ⇒ ∃ bx , by, bz with same profile.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

6

1
0

∞

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

Michał Pilipczuk Sparse graphs 36 / 41

Semi-ladders
From uqw we get:

− set S satisfying |S| 6 s; and

− B ⊆ {b1, . . . , b`} s.t. |B| > 2(d + 1)s and distG−S(bi, bj) > 2d for bi, bj ∈ B.

For bi ∈ B, let πi : S → {1, . . . , d,∞} be its distance-d profile on S:

πi(v) =

{
dist(bi, v) if 6 d ;
∞ otherwise.

Only (d + 1)s possible profiles ⇒ ∃ bx , by, bz with same profile.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9

a10

b10

6

1
0

∞

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

Michał Pilipczuk Sparse graphs 36 / 41

Semi-ladders

There are az-to-bx and az-to-by paths of length 6 d .

One of them needs to intersect S, say the az-to-by path.

πy = πz ⇒ Same distances to the intersection point.

We conclude that dist(az, bz) 6 d . Contradiction.

Cor: Maximum semi-ladder order is ` := N2d(2(d + 1)s2d).

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

6 d

6 d

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

6 d

6 d

equal

Michał Pilipczuk Sparse graphs 37 / 41

Semi-ladders

There are az-to-bx and az-to-by paths of length 6 d .

One of them needs to intersect S, say the az-to-by path.

πy = πz ⇒ Same distances to the intersection point.

We conclude that dist(az, bz) 6 d . Contradiction.

Cor: Maximum semi-ladder order is ` := N2d(2(d + 1)s2d).

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

6 d

6 d

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

6 d

6 d

equal

Michał Pilipczuk Sparse graphs 37 / 41

Semi-ladders

There are az-to-bx and az-to-by paths of length 6 d .

One of them needs to intersect S, say the az-to-by path.

πy = πz ⇒ Same distances to the intersection point.

We conclude that dist(az, bz) 6 d . Contradiction.

Cor: Maximum semi-ladder order is ` := N2d(2(d + 1)s2d).

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

6 d

6 d

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

6 d

6 d

equal

Michał Pilipczuk Sparse graphs 37 / 41

Semi-ladders

There are az-to-bx and az-to-by paths of length 6 d .

One of them needs to intersect S, say the az-to-by path.

πy = πz ⇒ Same distances to the intersection point.

We conclude that dist(az, bz) 6 d . Contradiction.

Cor: Maximum semi-ladder order is ` := N2d(2(d + 1)s2d).

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

6 d

6 d

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

6 d

6 d

equal

Michał Pilipczuk Sparse graphs 37 / 41

Semi-ladders

There are az-to-bx and az-to-by paths of length 6 d .

One of them needs to intersect S, say the az-to-by path.

πy = πz ⇒ Same distances to the intersection point.

We conclude that dist(az, bz) 6 d . Contradiction.

Cor: Maximum semi-ladder order is ` := N2d(2(d + 1)s2d).

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

6 d

6 d

a1

b1

ax

bx

a3

b3

ay

by

a5

b5

a6

b6

az

bz

a8

b8

a9

b9

a10

b10

6 d

6 d

equal

Michał Pilipczuk Sparse graphs 37 / 41

Case k > 1

Claim

For k > 1, the number of rounds is < k`+1
, where ` is the bound for k = 1.

Suppose the Algorithm performs p = k`+1
rounds.

− Dp dist-d dominates {b1, . . . , bp−1}.
− Hence: Some ap ∈ Dp dist-d dominates

1

k fraction of {b1, . . . , bp−1}.
− Restrict a�ention to those > k` vertices and continue.

` + 1 rounds a semi-ladder of order ` + 1 Contradiction.

b1

· · ·

Dp

bp

b1

Dp

bp

b1

Dp

bp

ap

b1

Dp

bp

b1

Dp

bp

Michał Pilipczuk Sparse graphs 38 / 41

Case k > 1

Claim

For k > 1, the number of rounds is < k`+1
, where ` is the bound for k = 1.

Suppose the Algorithm performs p = k`+1
rounds.

− Dp dist-d dominates {b1, . . . , bp−1}.
− Hence: Some ap ∈ Dp dist-d dominates

1

k fraction of {b1, . . . , bp−1}.
− Restrict a�ention to those > k` vertices and continue.

` + 1 rounds a semi-ladder of order ` + 1 Contradiction.

b1

· · ·

Dp

bp

b1

Dp

bp

b1

Dp

bp

ap

b1

Dp

bp

b1

Dp

bp

Michał Pilipczuk Sparse graphs 38 / 41

Case k > 1

Claim

For k > 1, the number of rounds is < k`+1
, where ` is the bound for k = 1.

Suppose the Algorithm performs p = k`+1
rounds.

− Dp dist-d dominates {b1, . . . , bp−1}.

− Hence: Some ap ∈ Dp dist-d dominates
1

k fraction of {b1, . . . , bp−1}.
− Restrict a�ention to those > k` vertices and continue.

` + 1 rounds a semi-ladder of order ` + 1 Contradiction.

b1

· · ·

Dp

bp

b1

Dp

bp

b1

Dp

bp

ap

b1

Dp

bp

b1

Dp

bp

Michał Pilipczuk Sparse graphs 38 / 41

Case k > 1

Claim

For k > 1, the number of rounds is < k`+1
, where ` is the bound for k = 1.

Suppose the Algorithm performs p = k`+1
rounds.

− Dp dist-d dominates {b1, . . . , bp−1}.
− Hence: Some ap ∈ Dp dist-d dominates

1

k fraction of {b1, . . . , bp−1}.

− Restrict a�ention to those > k` vertices and continue.

` + 1 rounds a semi-ladder of order ` + 1 Contradiction.

b1

· · ·

Dp

bp

b1

Dp

bp

b1

Dp

bp

ap

b1

Dp

bp

b1

Dp

bp

Michał Pilipczuk Sparse graphs 38 / 41

Case k > 1

Claim

For k > 1, the number of rounds is < k`+1
, where ` is the bound for k = 1.

Suppose the Algorithm performs p = k`+1
rounds.

− Dp dist-d dominates {b1, . . . , bp−1}.
− Hence: Some ap ∈ Dp dist-d dominates

1

k fraction of {b1, . . . , bp−1}.
− Restrict a�ention to those > k` vertices and continue.

` + 1 rounds a semi-ladder of order ` + 1 Contradiction.

b1

· · ·

Dp

bp

b1

Dp

bp

b1

Dp

bp

ap

b1

Dp

bp

b1

Dp

bp

Michał Pilipczuk Sparse graphs 38 / 41

Case k > 1

Claim

For k > 1, the number of rounds is < k`+1
, where ` is the bound for k = 1.

Suppose the Algorithm performs p = k`+1
rounds.

− Dp dist-d dominates {b1, . . . , bp−1}.
− Hence: Some ap ∈ Dp dist-d dominates

1

k fraction of {b1, . . . , bp−1}.
− Restrict a�ention to those > k` vertices and continue.

` + 1 rounds a semi-ladder of order ` + 1 Contradiction.

b1

· · ·

Dp

bp

b1

Dp

bp

b1

Dp

bp

ap

b1

Dp

bp

b1

Dp

bp

Michał Pilipczuk Sparse graphs 38 / 41

Case k > 1

Claim

For k > 1, the number of rounds is < k`+1
, where ` is the bound for k = 1.

Suppose the Algorithm performs p = k`+1
rounds.

− Dp dist-d dominates {b1, . . . , bp−1}.
− Hence: Some ap ∈ Dp dist-d dominates

1

k fraction of {b1, . . . , bp−1}.
− Restrict a�ention to those > k` vertices and continue.

` + 1 rounds a semi-ladder of order ` + 1 Contradiction.

b1

· · ·

Dp

bp

b1

Dp

bp

b1

Dp

bp

ap

b1

Dp

bp

b1

Dp

bp

Michał Pilipczuk Sparse graphs 38 / 41

Case k > 1

Claim

For k > 1, the number of rounds is < k`+1
, where ` is the bound for k = 1.

Suppose the Algorithm performs p = k`+1
rounds.

− Dp dist-d dominates {b1, . . . , bp−1}.
− Hence: Some ap ∈ Dp dist-d dominates

1

k fraction of {b1, . . . , bp−1}.
− Restrict a�ention to those > k` vertices and continue.

` + 1 rounds a semi-ladder of order ` + 1 Contradiction.

b1

· · ·

Dp

bp

b1

Dp

bp

b1

Dp

bp

ap

b1

Dp

bp

b1

Dp

bp

Michał Pilipczuk Sparse graphs 38 / 41

Ladders and stability

To define semi-ladders, we used predicate ϕ(x, y) = “dist(x, y) 6 d“.

Idea: Replace distance checks with any first-order predicate.

Definition

Let G be a graph and ϕ(x, y) be an FO formula.

A ϕ-ladder in G is a pair of sequences a1, . . . , a` and b1, . . . , b` such that

G |= ϕ(ai, bj) ⇔ i > j.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

ϕ-ladder ! linear order

Definition

A class C is stable if for every FO formula ϕ(x, y), there is

a finite upper bound on the orders of ϕ-ladders in graphs from C.

Michał Pilipczuk Sparse graphs 39 / 41

Ladders and stability

To define semi-ladders, we used predicate ϕ(x, y) = “dist(x, y) 6 d“.

Idea: Replace distance checks with any first-order predicate.

Definition

Let G be a graph and ϕ(x, y) be an FO formula.

A ϕ-ladder in G is a pair of sequences a1, . . . , a` and b1, . . . , b` such that

G |= ϕ(ai, bj) ⇔ i > j.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

ϕ-ladder ! linear order

Definition

A class C is stable if for every FO formula ϕ(x, y), there is

a finite upper bound on the orders of ϕ-ladders in graphs from C.

Michał Pilipczuk Sparse graphs 39 / 41

Ladders and stability

To define semi-ladders, we used predicate ϕ(x, y) = “dist(x, y) 6 d“.

Idea: Replace distance checks with any first-order predicate.

Definition

Let G be a graph and ϕ(x, y) be an FO formula.

A ϕ-ladder in G is a pair of sequences a1, . . . , a` and b1, . . . , b` such that

G |= ϕ(ai, bj) ⇔ i > j.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

ϕ-ladder ! linear order

Definition

A class C is stable if for every FO formula ϕ(x, y), there is

a finite upper bound on the orders of ϕ-ladders in graphs from C.

Michał Pilipczuk Sparse graphs 39 / 41

Ladders and stability

To define semi-ladders, we used predicate ϕ(x, y) = “dist(x, y) 6 d“.

Idea: Replace distance checks with any first-order predicate.

Definition

Let G be a graph and ϕ(x, y) be an FO formula.

A ϕ-ladder in G is a pair of sequences a1, . . . , a` and b1, . . . , b` such that

G |= ϕ(ai, bj) ⇔ i > j.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

ϕ-ladder ! linear order

Definition

A class C is stable if for every FO formula ϕ(x, y), there is

a finite upper bound on the orders of ϕ-ladders in graphs from C.

Michał Pilipczuk Sparse graphs 39 / 41

Ladders and stability

To define semi-ladders, we used predicate ϕ(x, y) = “dist(x, y) 6 d“.

Idea: Replace distance checks with any first-order predicate.

Definition

Let G be a graph and ϕ(x, y) be an FO formula.

A ϕ-ladder in G is a pair of sequences a1, . . . , a` and b1, . . . , b` such that

G |= ϕ(ai, bj) ⇔ i > j.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

ϕ-ladder ! linear order

Definition

A class C is stable if for every FO formula ϕ(x, y), there is

a finite upper bound on the orders of ϕ-ladders in graphs from C.

Michał Pilipczuk Sparse graphs 39 / 41

Ladders and stability

To define semi-ladders, we used predicate ϕ(x, y) = “dist(x, y) 6 d“.

Idea: Replace distance checks with any first-order predicate.

Definition

Let G be a graph and ϕ(x, y) be an FO formula.

A ϕ-ladder in G is a pair of sequences a1, . . . , a` and b1, . . . , b` such that

G |= ϕ(ai, bj) ⇔ i > j.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

ϕ-ladder ! linear order

Definition

A class C is stable if for every FO formula ϕ(x, y), there is

a finite upper bound on the orders of ϕ-ladders in graphs from C.

Michał Pilipczuk Sparse graphs 39 / 41

Beyond Sparsity

Theorem (Adler & Adler; Podewski & Ziegler)

Every nowhere dense class is stable.

Every subgraph-closed stable class is nowhere dense.

There are many more stable classes than nowhere dense:

− For an FO formula ϕ(x, y) and graph G, we define:

Gϕ := (V (G), {uv : G |= ϕ(u, v)}).

− Ex: graph powers, complementation,...

− For a class C, we define:

Cϕ := {Gϕ : G ∈ C }.
− If C is nowhere dense, then Cϕ is called structurally nowhere dense.

Fact. Structurally nowhere dense ⇒ Stable

Goal: A theory of well-structured dense graphs.

Michał Pilipczuk Sparse graphs 40 / 41

Beyond Sparsity

Theorem (Adler & Adler; Podewski & Ziegler)

Every nowhere dense class is stable.

Every subgraph-closed stable class is nowhere dense.

There are many more stable classes than nowhere dense:

− For an FO formula ϕ(x, y) and graph G, we define:

Gϕ := (V (G), {uv : G |= ϕ(u, v)}).

− Ex: graph powers, complementation,...

− For a class C, we define:

Cϕ := {Gϕ : G ∈ C }.
− If C is nowhere dense, then Cϕ is called structurally nowhere dense.

Fact. Structurally nowhere dense ⇒ Stable

Goal: A theory of well-structured dense graphs.

Michał Pilipczuk Sparse graphs 40 / 41

Beyond Sparsity

Theorem (Adler & Adler; Podewski & Ziegler)

Every nowhere dense class is stable.

Every subgraph-closed stable class is nowhere dense.

There are many more stable classes than nowhere dense:

− For an FO formula ϕ(x, y) and graph G, we define:

Gϕ := (V (G), {uv : G |= ϕ(u, v)}).

− Ex: graph powers, complementation,...

− For a class C, we define:

Cϕ := {Gϕ : G ∈ C }.
− If C is nowhere dense, then Cϕ is called structurally nowhere dense.

Fact. Structurally nowhere dense ⇒ Stable

Goal: A theory of well-structured dense graphs.

Michał Pilipczuk Sparse graphs 40 / 41

Beyond Sparsity

Theorem (Adler & Adler; Podewski & Ziegler)

Every nowhere dense class is stable.

Every subgraph-closed stable class is nowhere dense.

There are many more stable classes than nowhere dense:

− For an FO formula ϕ(x, y) and graph G, we define:

Gϕ := (V (G), {uv : G |= ϕ(u, v)}).

− Ex: graph powers, complementation,...

− For a class C, we define:

Cϕ := {Gϕ : G ∈ C }.
− If C is nowhere dense, then Cϕ is called structurally nowhere dense.

Fact. Structurally nowhere dense ⇒ Stable

Goal: A theory of well-structured dense graphs.

Michał Pilipczuk Sparse graphs 40 / 41

Beyond Sparsity

Theorem (Adler & Adler; Podewski & Ziegler)

Every nowhere dense class is stable.

Every subgraph-closed stable class is nowhere dense.

There are many more stable classes than nowhere dense:

− For an FO formula ϕ(x, y) and graph G, we define:

Gϕ := (V (G), {uv : G |= ϕ(u, v)}).

− Ex: graph powers, complementation,...

− For a class C, we define:

Cϕ := {Gϕ : G ∈ C }.

− If C is nowhere dense, then Cϕ is called structurally nowhere dense.

Fact. Structurally nowhere dense ⇒ Stable

Goal: A theory of well-structured dense graphs.

Michał Pilipczuk Sparse graphs 40 / 41

Beyond Sparsity

Theorem (Adler & Adler; Podewski & Ziegler)

Every nowhere dense class is stable.

Every subgraph-closed stable class is nowhere dense.

There are many more stable classes than nowhere dense:

− For an FO formula ϕ(x, y) and graph G, we define:

Gϕ := (V (G), {uv : G |= ϕ(u, v)}).

− Ex: graph powers, complementation,...

− For a class C, we define:

Cϕ := {Gϕ : G ∈ C }.
− If C is nowhere dense, then Cϕ is called structurally nowhere dense.

Fact. Structurally nowhere dense ⇒ Stable

Goal: A theory of well-structured dense graphs.

Michał Pilipczuk Sparse graphs 40 / 41

Beyond Sparsity

Theorem (Adler & Adler; Podewski & Ziegler)

Every nowhere dense class is stable.

Every subgraph-closed stable class is nowhere dense.

There are many more stable classes than nowhere dense:

− For an FO formula ϕ(x, y) and graph G, we define:

Gϕ := (V (G), {uv : G |= ϕ(u, v)}).

− Ex: graph powers, complementation,...

− For a class C, we define:

Cϕ := {Gϕ : G ∈ C }.
− If C is nowhere dense, then Cϕ is called structurally nowhere dense.

Fact. Structurally nowhere dense ⇒ Stable

Goal: A theory of well-structured dense graphs.

Michał Pilipczuk Sparse graphs 40 / 41

Beyond Sparsity

Theorem (Adler & Adler; Podewski & Ziegler)

Every nowhere dense class is stable.

Every subgraph-closed stable class is nowhere dense.

There are many more stable classes than nowhere dense:

− For an FO formula ϕ(x, y) and graph G, we define:

Gϕ := (V (G), {uv : G |= ϕ(u, v)}).

− Ex: graph powers, complementation,...

− For a class C, we define:

Cϕ := {Gϕ : G ∈ C }.
− If C is nowhere dense, then Cϕ is called structurally nowhere dense.

Fact. Structurally nowhere dense ⇒ Stable

Goal: A theory of well-structured dense graphs.

Michał Pilipczuk Sparse graphs 40 / 41

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

− Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

− PhD students of ALGOMANET:

https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html

− high school students at Math Beyond Limits 2019:

https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Thank you for the a�ention!

Michał Pilipczuk Sparse graphs 41 / 41

www.mimuw.edu.pl/~mp248287/sparsity2
https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html
https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

− Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

− PhD students of ALGOMANET:

https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html

− high school students at Math Beyond Limits 2019:

https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Thank you for the a�ention!

Michał Pilipczuk Sparse graphs 41 / 41

www.mimuw.edu.pl/~mp248287/sparsity2
https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html
https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

− Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

− PhD students of ALGOMANET:

https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html

− high school students at Math Beyond Limits 2019:

https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Thank you for the a�ention!

Michał Pilipczuk Sparse graphs 41 / 41

www.mimuw.edu.pl/~mp248287/sparsity2
https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html
https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

− Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

− PhD students of ALGOMANET:

https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html

− high school students at Math Beyond Limits 2019:

https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Thank you for the a�ention!

Michał Pilipczuk Sparse graphs 41 / 41

www.mimuw.edu.pl/~mp248287/sparsity2
https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html
https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

− Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

− PhD students of ALGOMANET:

https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html

− high school students at Math Beyond Limits 2019:

https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Thank you for the a�ention!

Michał Pilipczuk Sparse graphs 41 / 41

www.mimuw.edu.pl/~mp248287/sparsity2
https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html
https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

− Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

− PhD students of ALGOMANET:

https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html

− high school students at Math Beyond Limits 2019:

https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Thank you for the a�ention!

Michał Pilipczuk Sparse graphs 41 / 41

www.mimuw.edu.pl/~mp248287/sparsity2
https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html
https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

− Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

− PhD students of ALGOMANET:

https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html

− high school students at Math Beyond Limits 2019:

https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Thank you for the a�ention!

Michał Pilipczuk Sparse graphs 41 / 41

www.mimuw.edu.pl/~mp248287/sparsity2
https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html
https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

− Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

− PhD students of ALGOMANET:

https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html

− high school students at Math Beyond Limits 2019:

https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Thank you for the a�ention!

Michał Pilipczuk Sparse graphs 41 / 41

www.mimuw.edu.pl/~mp248287/sparsity2
https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html
https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

− Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

− PhD students of ALGOMANET:

https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html

− high school students at Math Beyond Limits 2019:

https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Thank you for the a�ention!

Michał Pilipczuk Sparse graphs 41 / 41

www.mimuw.edu.pl/~mp248287/sparsity2
https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html
https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

