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Organization

Rough plan:

9:15 – 10:00 Introduction

10:15 – 11:00 Generalized coloring numbers

11:15 – 12:00 Treedepth and low treedepth colorings

12:15 – 13:00 Uniform quasi-wideness and ladders

Format:

− Lecture interleaved with short exercises.  Be active!

− Understanding checks by writing +1 in the chat.
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Sparsity

Graphs in applications are o�en sparse.

− Transportation networks are (roughly) planar.

− Facebook graph has average degree 338 and median degree 200.

What does it mean sparse?

− Bounded degree?

− Planar-like? Tree-like?

− Fixed degree distribution?

Goal. A mathematical theory of sparse graphs that is:

1. general and robust;

2. elegant and interesting;

3. useful in applications.

Sparsity: a young area of graph theory that ± achieves all of the above.
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Measuring sparsity

Q: What does it mean that a graph is sparse?

A�empt 1. A graph G is sparse if it has a linear number of edges.

− Formally, |E(G)| 6 c · |V (G)| for some constant c.

avgdeg(G) =

∑
u∈V (G) deg(u)

|V (G)|
=

2|E(G)|
|V (G)|

− Equivalently, average degree in G is bounded by 2c.

Ex 1. Maximum degree 6 d ⇒ Average degree 6 d .

Ex 2. Planar graph has 6 3n− 6 edges ⇒ Average degree < 6.

Issue: A complete graph on k vertices plus k2
isolated vertices.

− Average degree smaller than 1.

− Contains a dense subgraph.
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Measuring sparsity

A�empt 2. Every subgraph of G has a linear number of edges.

−We define maximum average degree of G as

mad(G) := max
H⊆G

avgdeg(H).

− G is sparse if mad(G) 6 c for some constant c.

Ex 1. G has maximum degree 6 d ⇒ mad(G) 6 d .

Ex 2. G is planar ⇒ mad(G) < 6.

Issue: A subdivided complete graph.

− Every subgraph has avgdeg 6 4.

− Is this graph really sparse?
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Measuring sparsity

Option 1. We decide that a subdivided complete graph is sparse.

−We can construct a theory around the parameter mad(·).
− mad(·) is essentially equivalent to arboricity and degeneracy.

− These connections are useful, but not really very deep.

Option 2. We decide that a subdivided complete graph is dense.

− Reason: It contains a dense substructure visible at “depth” 1.

− Need: A notion of embedding that would capture this.
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Minor order

Definition

H is a minor of G ⇔
H is obtained from a subgraph of G by contracting connected subgraphs

HG

Theorem (Kuratowski; Wagner)

Planar graphs are exactly {K5,K3,3}-minor-free graphs.

Theorem (Robertson and Seymour)

For every t ∈ N, every Kt-minor-free graph looks like this:

figure by Felix Reidl
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Shallow minors

A�empt 3. Graphs excluding Kt as a minor, for some t ∈ N.

Issue: Graphs with maxdeg 3 admit all complete graphs as minors.

Ergo: Excluding minors leads to an interesting theory,

but this is not the theory we are a�er.

Idea: Think about local minors.

Definition

H is a depth-d minor of G ⇔
H is obtained from a subgraph of G by contracting subgraphs of radius 6 d

HG

depth-0 minors = subgraphs
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HG

depth-0 minors = subgraphs
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Notions of sparsity

Intuition: Sparsity⇔ Exclusion of dense structures at every fixed depth

Definition

∇d(G) := sup { avgdeg(H) : H is a depth-d minor of G }
ωd(G) := sup { t : Kt is a depth-d minor of G }.

Note: depth-0 minors = subgraphs  ∇0(G) = ?mad(G).

For a class of graphs C, we write:

∇d(C) := sup
G∈C
∇d(G) and ωd(C) := sup

G∈C
ωd(G).

Definition

C has bounded expansion if∇d(C) is finite for all d ∈ N.

C is nowhere dense if ωd(C) is finite for all d ∈ N.
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Notions of sparsity

Equivalently:

C has bounded expansion if for every d ∈ N there is c(d) ∈ N s.t.

avgdeg(H) 6 c(d) whenever H is a depth-d minor of some G ∈ C.

C is nowhere dense if for every d ∈ N there is t(d) ∈ N s.t.

Kt(d) is not a depth-d minor of any G ∈ C.

Key idea: Sparsity is a property of a class of graphs.

− It is a limit property of graphs from the class.

− Can be formalized using standard limit constructions (P, Toruńczyk).

− Classes of graphs as basic objects of interest.
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Examples and relations

1. Every class of bounded degree has bounded expansion.

Sol: Depth-d minors have max degree 6 ∆d+1
.

2. Every class that excludes some minor has bounded expansion.

Sol: Kt-minor-free graphs have avgdeg O(t
√

log t) and are minor-closed.

3. Every class of bounded expansion is nowhere dense.

Sol: Cliques have unbounded average degree.

4. Consider the class C = {G : ∆(G) 6 girth(G)}.
4a: Show that C is nowhere dense.

Sol: ωd(G) > 3⇒ d > girth(G)/9⇒ d > ∆(G)/9⇒ ωd(G) 6 (9d)d .

4b: Show that C does not have bounded expansion.

Sol: Erdős random construction.

Fact. C is nowhere dense⇒ ∀d, ε > 0,∇d(G) 6 O(nε) for all G ∈ C.
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The World of Sparsity

Star forests
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Equivalent characterizations

Sparsity of shallow minors

Degeneracy

Weak coloring number

Generalized coloring numbers

Uniform quasi-wideness Neighborhood complexity

Low treedepth colorings

Fraternal augmentations

k-Helly property

Neighborhood covers

Spli�er game

Sparsity of shallow top-minors

Stability
Part 2

Part 3

Part 4
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Working with Sparsity

Many characterizations of bnd expansion and nowhere denseness.

− Equivalence shows that we are working with fundamental notions.

− Each characterization is a tool.

Original idea: Study the combinatorics of sparse graphs.

− Goal: Describe structural properties implied by sparsity.

These properties can be used to design e�icient algorithms.

− Areas: Parameterized, approximation, and distributed algorithms.

− Applicable to problems of local nature.

Sparsity delimits tractability of First Order logic on graphs.

Theorem (Grohe, Kreutzer, Siebertz)

Suppose C is subgraph-closed.

Then C is nowhere dense⇔ FO Model Checking is FPT on C.
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Part 2:

Generalized coloring numbers



Degeneracy

Definition

G is d-degenerate⇔ Every subgraph of G has a vertex of degree 6 d .

dgn(G) := least d for which G is d-degenerate.

1. Prove that mad(G)/2 6 dgn(G) 6 mad(G).

right: mindeg 6 avgdeg

le�: |E(H)| 6 dgn(G) · |V (H)| by removing vertices one by one.

2. Prove that G is d-degenerate⇔
G has a vertex ordering where each vertex has 6 d neighbors to the le�.

(⇒): extract vertices one by one

(⇐): examine the rightmost vertex

3. d-degenerate graphs are (d + 1)-colorable

Sol: Greedy le�-to-right coloring on the ordering.
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Generalizing degeneracy

Idea: A degeneracy ordering exposes a global structure in a graph.

Degeneracy orderings! mad(·), which concerns depth-0 minors.

Idea: Introduce a generalization of degeneracy orderings to larger depth.

These are called generalized coloring numbers.

There are three natural ways to make the generalization.

Suppose d ∈ N, G is a graph, and σ is a vertex ordering.

Consider any vertex v .

Want: Define “σ-smaller neighbors” of v at “depth” d .

v
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Bounded depth reachability

D1: u 6σ v is weakly d-reachable from v ⇔
There is a v-to-u path P of length 6 d that is entirely >σ u.

vu

WReachd [G, σ, v] := { u 6σ v : u is weakly d-reachable from v }.

D2: u 6σ v is strongly d-reachable from v ⇔
There is a v-to-u path P of length 6 d that is >σ v , apart from u

vu

SReachd [G, σ, v] := { u 6σ v : u is strongly d-reachable from v }.

D3: admd(G, σ, v) :=max # of disjoint v-to-(<σ v) paths of length 6 d

v
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Generalized coloring numbers

Definition

For a graph G and vertex ordering σ, we define:

wcold(G, σ) := maxv |WReachd [G, σ, v]|,
scold(G, σ) := maxv |SReachd [G, σ, v]|,
admd(G, σ) := maxv admd(G, σ, v),

wcold(G) := minσ wcold(G, σ),

scold(G) := minσ scold(G, σ),

admd(G) := minσ admd(G, σ).

1. dgn(G) = adm0(G) = scol0(G)− 1 = wcol0(G)− 1.

2. admd(G) 6 scold(G) 6 wcold(G).

Now: These parameters are functionally equivalent.
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Equivalence of generalized coloring numbers

1. scold(G) 6 1 + admd(G)d .

v

2. wcold(G) 6 1 + scold(G) + scold(G)2 + . . . + scold(G)d .

v
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Equivalence with grads

Lemma

For a graph G and d ∈ N, we have:

admd(G) 6 6d(∇d(G) + 1)3
, ∇d(G) 6 wcol4d+1(G).

Proof of ∇d(G) 6 wcol4d+1(G):

− Let H �d G and {Ju : u ∈ V (H)} be a model.

− Let φ(u) := minσ V (Ju).

− Let w ∈ V (H) be such that φ(w) is σ-maximal.

− Obs: For each u ∈ NH(w), we have φ(u) ∈WReach4d+1[G, σ, φ(w)].

− Cor: w has degree 6 wcol4d+1(G) in H.

− Cor: Every H �d G has a vertex of degree 6 wcol4d+1(G). �
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Equivalence with grads

Sketch of proof of admd(G) 6 6d(∇d(G) + 1)3:

− There is a greedy algorithm, similarly as for degeneracy.

− If the algorithm gets stuck, it uncovers the following structure:

−We can now find a dense depth-d minor. �

Theorem

For a class of graphs C, the following are equivalent:

− C has bounded expansion;

− ∇d(C) is finite for all d ∈ N;

− wcold(C) is finite for all d ∈ N;

− scold(C) is finite for all d ∈ N;

− admd(C) is finite for all d ∈ N.
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Distance-d domination

Definition

Let G be a graph and d ∈ N.

D ⊆ V (G) is a dist-d dominating set if

⋃
u∈D Balld(u) = V (G).

domd(G) := min size of a dist-d dominating set in G

Let σ be a vertex ordering of G. Consider the algorithm:

− Every vertex v points to minσWReachd [G, σ, v].

− Let D := set of vertices that are pointed to.

1. Prove that |D| 6 wcol2d(G, σ) · domd(G).
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Hi�ing and packing duality

Cor: Constant-factor apx algorithm for domd(G) in bnd expansion classes.

− Compute σ with wcol2d(G, σ) bounded by a constant.

− Each v picks minσWReachd [G, σ, v].

− Output the picked vertices.

Obs: domd(G) is the hi�ing number for radius-d balls.

Def: Let scad(G) be the packing number for radius-d balls.

Obviously scad(G) 6 domd(G), but the gap is unbounded in general.

Theorem (Dvořák)

For every G and d ∈ N, we have domd(G) 6 wcol2d(G)2 · scad(G).

Cor: Constant-factor gap in bounded expansion classes.

Proof: A greedy procedure on a vertex ordering witnessing wcol2d(G).
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Part 3:

Treedepth and low treedepth colorings



Treedepth

Definition

Elimination forest of G is a rooted forest F with V (F ) = V (G) s.t:

u, v adjacent in G ⇒ u, v in ancestor/descendant relation in F

td(G) := least possible depth of an elimination forest of G.

Basic remarks:

− If G is connected, then F must be a tree.

− H ⊆ G ⇒ td(H) 6 td(G)

− tw(G) 6 td(G) 6 tw(G) · log n

− td(G) = wcol∞(G)
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Treedepth game

Consider the following one-player game played on a graph G in rounds:

− Each round: Remove one vertex from each connected component.

Fact. td(G) = min # rounds needed to eliminate the whole graph

(>): Eliminate elimination forest level by level.

(6): Elimination strategy yields an elimination forest.

1. Compute:

td(Kn) =

td(Pn) =
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Treedepth and bounded expansion

Intuition:

− Low td coloring: Decomposition of a graph into very simple pieces.

− very simple! bnd treedepth

− Thm: If C has bnd expansion,

then each G ∈ C has such a decomposition.

Fix C of bnd expansion, G ∈ C, and a parameter p ∈ N.

Let σ be a vertex ordering witnessing the value of wcol
2
p−1(G).

Let φ be the greedy coloring with wcol
2
p−1(G) colors s.t.:

For each v , φ(v) /∈ colors given to WReach
2
p−1(G) \ {v} by φ.
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Constructing a low td coloring

1. P is a path on 2
p−1

vertices ⇒ P receives > p di�erent colors.

2. H ⊆ G is connected and receives 6 p colors ⇒
H has a vertex of unique color.

3. H ⊆ G receives 6 p colors ⇒ td(H) 6 p.
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Low td colorings

Theorem (low td colorings)

Let C be a class of bnd expansion and p ∈ N. Then there is M(p) ∈ N

such that every G ∈ C has a coloring with M(p) colors satisfying:

Every p colors together induce a subgraph of treedepth 6 p.

Note: In our proof, M(p) = wcol
2
p−1(C).

Theorem (low td coverings)

Let C be a class of bnd expansion and p ∈ N. Then there is N(p) ∈ N

such that in every G ∈ C there are vertex subsets A1, . . . ,AN(p) satisfying:

− td(G[Ai]) 6 p for each i; and

− for each X ⊆ V (G) with |X | 6 p, there is Ai such that X ⊆ Ai.

Proof:

− {A1,A2, . . . ,AN(p)} = subsets of p colors.

− N(p) =
(M(p)

p

)
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Algorithmic application

Subgraph Isomorphism:

For a fixed graph Q, check whether input G contains Q as a subgraph.

Let p := |V (Q)|. (Imagine p = 50)

Trivial: running time O(|V (G)|p).

− In general, running time |V (G)|o(p) is unlikely.

Supposing G ∈ C where C has bnd expansion, we can do as follows:

− Compute a treedepth-p cover A1, . . . ,AN(p) of G.

− For each i, test if Q ⊆ G[Ai] by dynamic programming in linear time.

− Obs: Q ⊆ G ⇔ Q ⊆ G[Ai] for some i.

Cor: A linear-time algorithm testing whether Q ⊆ G.
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Combinatorial application

Theorem

Let C be a class of bnd expansion and d ∈ N be odd. Then there is

L(d) ∈ N such that every G ∈ C has a coloring φ with L(d) colors satisfying:

dist(u, v) = d ⇒ φ(u) 6= φ(v).

Lemma

If td(G) = p, then G has a coloring with 2
p − 1 colors such that

dist(u, v) is odd ⇒ φ(u) 6= φ(v).

Lemma⇒ Theorem:

− Let {A1, . . . ,AN(d+1)} be a treedepth-(d + 1) covering of G.

− Color each G[Ai] using Lemma with 2
d+1 − 1 colors.

− Construct the product coloring.

− L(d) =
(
2
d+1

)N(d+1)
.

− Obs: A u-to-v path of length d is entirely contained in some G[Ai].
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Structural measures: summary

Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant  bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41



Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant  bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41



Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant  bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41



Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant  bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41



Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant  bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41



Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant  bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41



Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant  bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41



Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant  bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41



Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant  bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41



Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant  bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41



Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant  bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41



Structural measures: summary
Generalized coloring numbers:

− Generalizations of degeneracy to connections of bounded length.

− Intuition: WReachd [G, σ, v] guards short connections from v .

− Main trick: Consider the σ-smallest vertex.

Low treedepth coverings:

− Global decomposition into simple pieces.

− Provide a reduction scheme:

bnd treedepth ⇒ bnd expansion

These are main tools for bounded expansion classes.

In nowhere dense classes they also work, but:

bounded by a constant  bounded by O(nε) for any ε > 0

Many arguments become much more technical or completely fail.

Main tool for nowhere dense classes: uniform quasi-wideness.

Michał Pilipczuk Sparse graphs 30 / 41



Part 4:

Uniform quasi-wideness and ladders



Wideness in graphs
Int: In a huge sparse graph, there are many vertices that are

pairwise far from each other.

Wrong: a star.

Int: In a huge sparse graph, one can remove few vertices so that

there are many vertices that are pairwise far from each other.

A |A| > Nd(m)

B |B| > m

S |S| 6 sd

Definition (Uniform quasi-wideness)

A class C is uqw if for every d ∈ N there exist sd ∈ N and Nd : N→ N s.t.

for every G ∈ C, m ∈ N, and A ⊆ V (G) satisfying |A| > Nd(m),

there exists S ⊆ V (G) and B ⊆ A− S such that

− |S| 6 sd ; and

− |B| > m and distG−S(u, v) > d for all distinct u, v ∈ B.
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Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41



Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41



Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41



Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41



Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41



Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41



Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41



Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41



Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41



Nowhere denseness and uqw

Theorem (Nešetřil and Ossona de Mendez)

A class of graphs is nowhere dense i� it is uniformly quasi-wide.

Note: One can always have Nd(m) = poly(m).

Uniform quasi-wideness is a Ramseyan tool for digging structure.

− Suppose in a graph G we have some huge complicated structure.

− Hit it with uqw to get a large well-behaved structure.

Now: Application to distance-d domination.

− Let C be nowhere dense and d ∈ N be fixed.

− Given G ∈ C and k ∈ N, decide whether domd(G) 6 k.

− Trivial: O(|V (G)|k). We want something faster.

Example from the work with Fabiański, Siebertz, and Toruńczyk.

Michał Pilipczuk Sparse graphs 32 / 41



Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41



Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41



Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41



Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41



Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41



Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41



Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41



Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41



Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.

If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41



Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41



Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed

Michał Pilipczuk Sparse graphs 33 / 41



Algorithm

D1
b1

Round 1: Take any k-tuple of vertices D1.

If D1 is a dist-d domset, terminate.

D1
b1

Otherwise there is an undominated vertex b1.

D2

D1
b1

Round 2: Find any k-tuple of vertices D2 that dist-d dominates b1.

If D2 is a dist-d domset, terminate.

D2
b2

D1
b1

Otherwise there is an undominated vertex b2.

D3

D2
b2

D1
b1

Round 3: Find any k-tuple of vertices D3 that dist-d dominates {b1, b2}.

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Round i: Find any k-tuple of vertices Di that dominates {b1, . . . , bi−1}.
If there is none, answer NO.

D6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

If Di is a dist-d domset, answer YES.

D6
b6

D5
b5

D4
b4

D3
b3

D2
b2

D1
b1

Otherwise there is an undominated vertex bi. Proceed
Michał Pilipczuk Sparse graphs 33 / 41



Analysis

The ith iteration can be performed in time f (k, i) · ‖G‖.
Why the number of iterations should be bounded?

Lemma

The Algorithm terminates a�er at most c · kc rounds, where c is a constant

that depends only on C and d .

Cor: A linear-time fixed-parameter algorithm.

− Running time f (k) · ‖G‖, where f depends on C and d .

Intuition:

− The algorithms gradually gathers di�icult witnesses.

− Eventually, domination of the witnesses forces domination of G.

Now: Proof of the Lemma for k = 1.
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Semi-ladders

A�er ` rounds, the Algorithm has constructed a semi-ladder of order `.

− Two sequences of vertices: a1, . . . , a` and b1, . . . , b`.

− For each i, we have dist(ai, bi) > d .

− For each j < i, we have dist(ai, bj) 6 d .

Suppose ` > N(2(d + 1)s), where N(·) = N2d(·) and s := s2d .
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Semi-ladders
From uqw we get:

− set S satisfying |S| 6 s; and

− B ⊆ {b1, . . . , b`} s.t. |B| > 2(d + 1)s and distG−S(bi, bj) > 2d for bi, bj ∈ B.

For bi ∈ B, let πi : S → {1, . . . , d,∞} be its distance-d profile on S:

πi(v) =

{
dist(bi, v) if 6 d ;
∞ otherwise.

Only (d + 1)s possible profiles ⇒ ∃ bx , by, bz with same profile.
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Semi-ladders

There are az-to-bx and az-to-by paths of length 6 d .

One of them needs to intersect S, say the az-to-by path.

πy = πz ⇒ Same distances to the intersection point.

We conclude that dist(az, bz) 6 d . Contradiction.

Cor: Maximum semi-ladder order is ` := N2d(2(d + 1)s2d).
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Case k > 1

Claim

For k > 1, the number of rounds is < k`+1
, where ` is the bound for k = 1.

Suppose the Algorithm performs p = k`+1
rounds.

− Dp dist-d dominates {b1, . . . , bp−1}.
− Hence: Some ap ∈ Dp dist-d dominates

1

k fraction of {b1, . . . , bp−1}.
− Restrict a�ention to those > k` vertices and continue.

` + 1 rounds  a semi-ladder of order ` + 1 Contradiction.

b1

· · ·

Dp

bp

b1

Dp

bp

b1

Dp

bp

ap

b1

Dp

bp

b1

Dp

bp
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Ladders and stability

To define semi-ladders, we used predicate ϕ(x, y) = “dist(x, y) 6 d“.

Idea: Replace distance checks with any first-order predicate.

Definition

Let G be a graph and ϕ(x, y) be an FO formula.

A ϕ-ladder in G is a pair of sequences a1, . . . , a` and b1, . . . , b` such that

G |= ϕ(ai, bj) ⇔ i > j.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

ϕ-ladder ! linear order

Definition

A class C is stable if for every FO formula ϕ(x, y), there is

a finite upper bound on the orders of ϕ-ladders in graphs from C.
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Beyond Sparsity

Theorem (Adler & Adler; Podewski & Ziegler)

Every nowhere dense class is stable.

Every subgraph-closed stable class is nowhere dense.

There are many more stable classes than nowhere dense:

− For an FO formula ϕ(x, y) and graph G, we define:

Gϕ := ( V (G), {uv : G |= ϕ(u, v)} ).

− Ex: graph powers, complementation,...

− For a class C, we define:

Cϕ := {Gϕ : G ∈ C }.
− If C is nowhere dense, then Cϕ is called structurally nowhere dense.

Fact. Structurally nowhere dense ⇒ Stable

Goal: A theory of well-structured dense graphs.
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Further reading

Monograph Sparsity of Nešetřil and Ossona de Mendez

Lecture notes and tutorials at www.mimuw.edu.pl/~mp248287/sparsity2

− Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

− PhD students of ALGOMANET:

https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html

− high school students at Math Beyond Limits 2019:

https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf

Thank you for the a�ention!
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− Hopefully, one day they will be turned into a book.

Video recordings of the lectures (link on the website).

Introduction through exercises for:

− PhD students of ALGOMANET:

https://mimuw.edu.pl/~mp248287/sparsity2/algomanet.html

− high school students at Math Beyond Limits 2019:

https://mimuw.edu.pl/~mp248287/sparsity2/mbl19-sparsity.pdf
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