Domination Games

Sandi Klavžar

Faculty of Mathematics and Physics, University of Ljubljana, Slovenia Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia Institute of Mathematics, Physics and Mechanics, Ljubljana

> 8th Polish Combinatorial Conference September 14-18, 2020, online

Domination game and its fundamental properties

Domination Games

< 🗇 🕨 < 🖻 🕨

Rules of the game

For a graph G = (V, E), the domination number of G is the minimum number, denoted γ(G), of vertices in a subset A of V such that V = N[A] = ∪_{x∈A}N[x].

Rules of the game

For a graph G = (V, E), the domination number of G is the minimum number, denoted γ(G), of vertices in a subset A of V such that V = N[A] = ∪_{x∈A}N[x].

Two players, Dominator (\mathcal{D}) and Staller (\mathcal{S}) , take turns choosing a vertex in G.

Rules of the game

For a graph G = (V, E), the domination number of G is the minimum number, denoted γ(G), of vertices in a subset A of V such that V = N[A] = ∪_{x∈A}N[x].

Two players, Dominator (\mathcal{D}) and Staller (\mathcal{S}) , take turns choosing a vertex in G.

If C denotes the set of vertices chosen at some point in a game and D or S chooses vertex w, then N[w] − N[C] ≠ Ø.

Rules of the game

For a graph G = (V, E), the domination number of G is the minimum number, denoted γ(G), of vertices in a subset A of V such that V = N[A] = ∪_{x∈A}N[x].

Two players, Dominator (\mathcal{D}) and Staller (\mathcal{S}) , take turns choosing a vertex in G.

- If C denotes the set of vertices chosen at some point in a game and D or S chooses vertex w, then N[w] − N[C] ≠ Ø.
- D uses a strategy to end the game in as few moves as possible; S uses a strategy that will require the most moves before the game ends.

Game domination number

• The game domination number of G is the number of moves, $\gamma_{g}(G)$, when \mathcal{D} moves first and both players use an optimal strategy. (D-game)

< (17) > < (17) > <

- The game domination number of G is the number of moves, $\gamma_{g}(G)$, when \mathcal{D} moves first and both players use an optimal strategy. (D-game)
- $d_1, s_1, d_2, s_2, \ldots$ denotes the sequence of moves.

- The game domination number of G is the number of moves, γ_g(G), when D moves first and both players use an optimal strategy. (D-game)
- $d_1, s_1, d_2, s_2, \ldots$ denotes the sequence of moves.
- The staller-start game domination number of G is the number of moves, γ'_g(G), when S moves first and both players use an optimal strategy. (S-game)

- The game domination number of G is the number of moves, γ_g(G), when D moves first and both players use an optimal strategy. (D-game)
- $d_1, s_1, d_2, s_2, \ldots$ denotes the sequence of moves.
- The staller-start game domination number of G is the number of moves, γ'_g(G), when S moves first and both players use an optimal strategy. (S-game)
- $s'_1, d'_1, s'_2, d'_2, \ldots$ denotes the sequence of moves.

- The game domination number of G is the number of moves, $\gamma_{g}(G)$, when \mathcal{D} moves first and both players use an optimal strategy. (D-game)
- $d_1, s_1, d_2, s_2, \ldots$ denotes the sequence of moves.
- The staller-start game domination number of G is the number of moves, γ'_g(G), when S moves first and both players use an optimal strategy. (S-game)
- $s'_1, d'_1, s'_2, d'_2, \ldots$ denotes the sequence of moves.

Introduced in:

Brešar, K., Rall, Domination game and an imagination strategy, SIAM J. Discrete Math. 24 (2010) 979–991.

Suppose \mathcal{D} and \mathcal{S} play D-game on G.

Domination Games

< ロ > < 同 > < 三 > < 三

3

Suppose \mathcal{D} and \mathcal{S} play D-game on G.

Let C denote the total set of vertices chosen by D and S.
 Then C is a dominating set of G.

< 17 × <

Suppose \mathcal{D} and \mathcal{S} play D-game on G.

- Let C denote the total set of vertices chosen by D and S.
 Then C is a dominating set of G.
- If D employs a strategy of selecting vertices from a minimum dominating set A of G, then D-game will have ended when D has exhausted the vertices from A.

Suppose \mathcal{D} and \mathcal{S} play D-game on G.

- Let C denote the total set of vertices chosen by D and S.
 Then C is a dominating set of G.
- If D employs a strategy of selecting vertices from a minimum dominating set A of G, then D-game will have ended when D has exhausted the vertices from A.

Theorem (Brešar, K., Rall, 2010)

If G is any graph, then $\gamma(G) \leq \gamma_g(G) \leq 2\gamma(G) - 1$. Moreover, for any integer $k \geq 1$ and any $0 \leq r \leq k - 1$, there exists a graph G with $\gamma(G) = k$ and $\gamma_g(G) = k + r$.

· < /₽ > < ≥ > <

Game played on a tree

 $\gamma_{\rm g}(T) = 2, \quad \gamma'_{g}(T) = 3$

э

Game played on C_6

$$\gamma_{\mathrm{g}}(\mathcal{C}_6) = 3, \quad \gamma'_{\mathbf{g}}(\mathcal{C}_6) = 2$$

・ロト ・回ト ・ヨト・

문어 문

$\gamma_{ m g}$ versus γ_g'

Theorem (Brešar, K., Rall, 2010; Kinnersley, West, Zamani, 2013) For any graph G, $|\gamma_g(G) - \gamma'_g(G)| \le 1$.

(日) (同) (三) (三)

3

$\gamma_{ m g}$ versus γ_g'

Theorem (Brešar, K., Rall, 2010; Kinnersley, West, Zamani, 2013) For any graph G, $|\gamma_g(G) - \gamma'_g(G)| \le 1$.

 Game played on G where S ⊆ V(G) already dominated. The vertices of S may be played during the game, but need not be dominated.

· < /₽ > < ≥ > <

$\gamma_{ m g}$ versus γ_g'

Theorem (Brešar, K., Rall, 2010; Kinnersley, West, Zamani, 2013) For any graph G, $|\gamma_g(G) - \gamma'_g(G)| \le 1$.

- Game played on G where S ⊆ V(G) already dominated. The vertices of S may be played during the game, but need not be dominated.
- G|S ... partially dominated graph

$\gamma_{ m g}$ versus γ_g'

Theorem (Brešar, K., Rall, 2010; Kinnersley, West, Zamani, 2013) For any graph G, $|\gamma_g(G) - \gamma'_g(G)| \le 1$.

- Game played on G where S ⊆ V(G) already dominated. The vertices of S may be played during the game, but need not be dominated.
- G|S ... partially dominated graph
- $\gamma_{g}(G|S)$, $\gamma'_{g}(G|S)$... number of moves in D-game, S-game.

- 4 同 6 4 日 6 4 日 6

 $\gamma_{
m g}$ versus γ_g'

Theorem (Brešar, K., Rall, 2010; Kinnersley, West, Zamani, 2013) For any graph G, $|\gamma_g(G) - \gamma'_g(G)| \le 1$.

- Game played on G where S ⊆ V(G) already dominated. The vertices of S may be played during the game, but need not be dominated.
- G|S ... partially dominated graph
- $\gamma_{g}(G|S)$, $\gamma'_{g}(G|S)$... number of moves in D-game, S-game.

Lemma (Kinnersley, West, Zamani, 2013)

(Continuation Principle) Let G be a graph and A, $B \subseteq V(G)$. If $B \subseteq A$, then $\gamma_g(G|A) \leq \gamma_g(G|B)$ and $\gamma'_g(G|A) \leq \gamma'_g(G|B)$.

<ロ> <同> <同> < 回> < 回>
Proof of Continuation Principle

 D will play two games: Game A on G|A (real game) and Game B on G|B (imagined game).

< (17) > < (2)

Proof of Continuation Principle

- *D* will play two games: Game A on G|A (real game) and Game B on G|B (imagined game).
- \mathcal{D} will keep the rule: the set of vertices dominated in Game A is a superset of vertices dominated in Game B.

Proof of Continuation Principle

- *D* will play two games: Game A on G|A (real game) and Game B on G|B (imagined game).
- \mathcal{D} will keep the rule: the set of vertices dominated in Game A is a superset of vertices dominated in Game B.
- Suppose Game B is not yet finished. If there are no undominated vertices in Game A, then Game A has finished before Game B and we are done.

Proof of Continuation Principle

- *D* will play two games: Game A on G|A (real game) and Game B on G|B (imagined game).
- \mathcal{D} will keep the rule: the set of vertices dominated in Game A is a superset of vertices dominated in Game B.
- Suppose Game B is not yet finished. If there are no undominated vertices in Game A, then Game A has finished before Game B and we are done.
- It is \mathcal{D} 's move: he selects an optimal move in game B. If it is legal in Game A, he plays it there as well, otherwise he plays any undominated vertex.

Proof of Continuation Principle cont'd

• It is *S*'s move: she plays in Game A. By the rule, this move is legal in Game B and *D* can replicate it in Game B.

Proof of Continuation Principle cont'd

- It is *S*'s move: she plays in Game A. By the rule, this move is legal in Game B and *D* can replicate it in Game B.
- By the rule, Game A finishes no later than Game B.

Proof of Continuation Principle cont'd

- It is S's move: she plays in Game A. By the rule, this move is legal in Game B and D can replicate it in Game B.
- By the rule, Game A finishes no later than Game B.
- \mathcal{D} played optimally on Game B. Hence:
 - If D played first in Game B, the number of moves taken on Game B was at most γ_g(G|B) (indeed, if S did not play optimally, it might be strictly less);
 - If S played first in Game B, the number of moves taken on Game B was at most γ'_g(G|B).

Proof of Continuation Principle cont'd

- It is S's move: she plays in Game A. By the rule, this move is legal in Game B and D can replicate it in Game B.
- By the rule, Game A finishes no later than Game B.
- \mathcal{D} played optimally on Game B. Hence:
 - If D played first in Game B, the number of moves taken on Game B was at most γ_g(G|B) (indeed, if S did not play optimally, it might be strictly less);
 - If S played first in Game B, the number of moves taken on Game B was at most γ'_g(G|B).
- Hence
 - If \mathcal{D} played first in Game B, then $\gamma_{g}(G|A) \leq \gamma_{g}(G|B)$;
 - If S played first in Game B, then $\gamma'_g(G|A) \leq \gamma'_g(G|B)$.

A (1) > A (1) > A

Proof of the theorem

• Consider D-game and let v be the first move of \mathcal{D} .

э

< (17) > < (2)

Proof of the theorem

- Consider D-game and let v be the first move of \mathcal{D} .
- Let G' be the resulting partially dominated graph.

Proof of the theorem

- Consider D-game and let v be the first move of \mathcal{D} .
- Let G' be the resulting partially dominated graph.

•
$$\gamma_{\mathrm{g}}(G) \leq \gamma'_{g}(G') + 1.$$

Proof of the theorem

- Consider D-game and let v be the first move of \mathcal{D} .
- Let G' be the resulting partially dominated graph.

•
$$\gamma_{\mathrm{g}}(G) \leq \gamma'_{g}(G') + 1.$$

• By Continuation Principle, $\gamma'_g(G') \leq \gamma'_g(G)$.

Proof of the theorem

- Consider D-game and let v be the first move of \mathcal{D} .
- Let G' be the resulting partially dominated graph.

•
$$\gamma_{\mathrm{g}}(G) \leq \gamma'_{g}(G') + 1.$$

- By Continuation Principle, $\gamma'_g(G') \leq \gamma'_g(G)$.
- Hence $\gamma_{g}(G) \leq \gamma'_{g}(G') + 1 \leq \gamma'_{g}(G) + 1$.

By a parallel argument, $\gamma_g'(G) \leq \gamma_{
m g}(G) + 1.$

The 3/5-conjecture

Conjecture (Kinnersley, West, Zamani, 2013)

If T is an n-vertex forest without isolated vertices, then $\gamma_{\rm g}(T) \leq \frac{3n}{5} \quad {\rm and} \quad \gamma'_g(T) \leq \frac{3n+2}{5}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The 3/5-conjecture

Conjecture (Kinnersley, West, Zamani, 2013)

If T is an n-vertex forest without isolated vertices, then $\gamma_{\rm g}(T) \leq \frac{3n}{5} \quad {\rm and} \quad \gamma'_g(T) \leq \frac{3n+2}{5}.$

Conjecture (Kinnersley, West, Zamani, 2013)

If G is an n-vertex connected graph, then $\gamma_{\rm g}(G) \leq \frac{3n}{5} \quad {\rm and} \quad \gamma'_g(G) \leq \frac{3n+2}{5}.$

・ロ > ・ (同 > ・ (回 > ・ (回 > ・)

The 3/5-conjecture

Conjecture (Kinnersley, West, Zamani, 2013)

If T is an n-vertex forest without isolated vertices, then $\gamma_{\rm g}(T) \leq \frac{3n}{5} \quad {\rm and} \quad \gamma'_g(T) \leq \frac{3n+2}{5}.$

Conjecture (Kinnersley, West, Zamani, 2013)

If G is an n-vertex connected graph, then $\gamma_{\mathrm{g}}(G) \leq \frac{3n}{5} \quad \mathrm{and} \quad \gamma'_{g}(G) \leq \frac{3n+2}{5}.$

• The conjecture implies the conjecture for forests. But it is NOT clear that the conjectures are equivalent.

・ロ > ・ 同 > ・ 目 > ・ 日 > ・

The 3/5-conjecture

Conjecture (Kinnersley, West, Zamani, 2013)

If T is an n-vertex forest without isolated vertices, then $\gamma_{\rm g}(T) \leq \frac{3n}{5} \quad {\rm and} \quad \gamma'_g(T) \leq \frac{3n+2}{5}.$

Conjecture (Kinnersley, West, Zamani, 2013)

If G is an n-vertex connected graph, then $\gamma_{\mathrm{g}}(G) \leq \frac{3n}{5} \quad \mathrm{and} \quad \gamma'_{g}(G) \leq \frac{3n+2}{5}.$

 The conjecture implies the conjecture for forests. But it is NOT clear that the conjectures are equivalent. "Apply the conjecture for forests to a spanning tree of G" does not work. A spanning subgraph may have smaller γ_g!

<ロ> <同> <同> < 回> < 回> < 回</p>

3/5-trees on 20 vertices

æ

3/5-trees on 20 vertices cont'd

Bujtás' approach

- At any moment of the game there are 3 types of vertices:
 - white ... undominated; of value 3
 - blue ... dominated with an undominated neighbor; of value 2
 - red ... dominated and all its neighbors dominated; of value 0

Bujtás' approach

- At any moment of the game there are 3 types of vertices:
 - white ... undominated; of value 3
 - blue ... dominated with an undominated neighbor; of value 2
 - red ... dominated and all its neighbors dominated; of value 0
- **Residual graph**: at a given point of the game the graph without red vertices and edges connecting two blue vertices.

Bujtás' approach cont'd

Theorem (Bujtás, 2014)

If T is an n-vertex isolate-free forest with w white vertices and b blue vertices and no two leaves are at distance 4, then

$$\gamma_{\rm g}(T) \leq \frac{3w+2b}{5} \, .$$

< 12 ▶ < 3

Bujtás' approach cont'd

Theorem (Bujtás, 2014)

If T is an n-vertex isolate-free forest with w white vertices and b blue vertices and no two leaves are at distance 4, then

$$\gamma_{\mathrm{g}}(T) \leq rac{3w+2b}{5}$$
.

Corollary

If T is an n-vertex isolate-free forest with in which no two leaves are at distance 4, then

$$\gamma_{\mathrm{g}}(T) \leq \frac{3n}{5}$$
.

Partial results

Theorem (Bujtás, 2015)

If G is an n-vertex graphs and $\delta(G) \ge 4$, then

$$\gamma_{\rm g}(G) \leq \frac{15\delta^4 - 28\delta^3 - 129\delta^2 + 354\delta - 216}{45\delta^4 - 195\delta^3 + 174\delta^2 + 174\delta - 216}n$$

Moreover, if $\delta(G) = 3$, then $\gamma_{g}(G) < 0.5574$.

< (17) > < (17) > <

Partial results cont'd

Theorem (Henning, Kinnerlsey, 2016)

If G is an n-vertex graphs and $\delta(G) \ge 2$, then

$$\gamma_{\mathrm{g}}(G) \leq \frac{3n}{5}$$
.

< 同 → < Ξ

Partial results cont'd

Theorem (Henning, Kinnerlsey, 2016)

If G is an n-vertex graphs and $\delta(G) \ge 2$, then

$$\gamma_{\mathrm{g}}(G) \leq rac{3n}{5}$$
 .

Theorem (Bujtás, 2020)

If G is an isolate-free graph, then $\gamma_g(G) \leq \frac{5}{8}n(G)$.

Variety of domination games

Domination Games

A (1) > A (2) > A

Five natural games

In the *i*th move of the domination game, the choice of v_i is legal if for v_1, \ldots, v_{i-1} chosen so far, the following hold:

$$N[v_i] \setminus \bigcup_{j=1}^{i-1} N[v_j] \neq \emptyset.$$

Five natural games

In the *i*th move of the domination game, the choice of v_i is legal if for v_1, \ldots, v_{i-1} chosen so far, the following hold:

$$N[v_i] \setminus \bigcup_{j=1}^{i-1} N[v_j] \neq \emptyset.$$

Five natural games

In the *i*th move of the domination game, the choice of v_i is legal if for v_1, \ldots, v_{i-1} chosen so far, the following hold:

$$N[v_i] \setminus \bigcup_{j=1}^{i-1} N[v_j] \neq \emptyset.$$

Modifying neighborhoods, we define:

• $N(v_i) \setminus \bigcup_{j=1}^{i-1} N(v_j) \neq \emptyset$... total domination game

Five natural games

In the *i*th move of the domination game, the choice of v_i is legal if for v_1, \ldots, v_{i-1} chosen so far, the following hold:

$$N[v_i] \setminus \bigcup_{j=1}^{i-1} N[v_j] \neq \emptyset.$$

- $N(v_i) \setminus \bigcup_{j=1}^{i-1} N(v_j) \neq \emptyset$... total domination game
- $N(v_i) \setminus \bigcup_{j=1}^{i-1} N[v_j] \neq \emptyset \dots$ Z-domination game

Five natural games

In the *i*th move of the domination game, the choice of v_i is legal if for v_1, \ldots, v_{i-1} chosen so far, the following hold:

$$N[v_i] \setminus \bigcup_{j=1}^{i-1} N[v_j] \neq \emptyset.$$

- $N(v_i) \setminus \bigcup_{j=1}^{i-1} N(v_j) \neq \emptyset$... total domination game
- $N(v_i) \setminus \bigcup_{j=1}^{i-1} N[v_j] \neq \emptyset \dots$ Z-domination game
- $N[v_i] \setminus \bigcup_{j=1}^{i-1} N(v_j) \neq \emptyset$, $v_i \neq v_j$ $(j < i) \dots$ L-domination game

Five natural games

In the *i*th move of the domination game, the choice of v_i is legal if for v_1, \ldots, v_{i-1} chosen so far, the following hold:

$$N[v_i] \setminus \bigcup_{j=1}^{i-1} N[v_j] \neq \emptyset.$$

- $N(v_i) \setminus \bigcup_{j=1}^{i-1} N(v_j) \neq \emptyset$... total domination game
- $N(v_i) \setminus \bigcup_{j=1}^{i-1} N[v_j] \neq \emptyset \dots$ Z-domination game
- $N[v_i] \setminus \bigcup_{j=1}^{i-1} N(v_j) \neq \emptyset$, $v_i \neq v_j$ (j < i) ... L-domination game
- $N[v_i] \setminus \bigcup_{j=1}^{i-1} N(v_j) \neq \emptyset$... LL-domination game

Related invariants

- the game total domination number $\gamma_{
 m tg}({\sf G})$
- ullet the game Z-domination number $\gamma_{\rm Zg}({\mathcal G})$
- the game L-domination number $\gamma_{
 m Lg}({\sf G})$
- the game LL-domination number $\gamma_{
 m LLg}({\sf G})$
- S-game: $\gamma'_{
 m tg}({\it G})$, $\gamma'_{
 m Zg}({\it G})$, $\gamma'_{
 m Lg}({\it G})$, and $\gamma'_{
 m LLg}({\it G})$

Related invariants

- the game total domination number $\gamma_{
 m tg}({\sf G})$
- ullet the game Z-domination number $\gamma_{\rm Zg}({\mathcal G})$
- the game L-domination number $\gamma_{
 m Lg}({\sf G})$
- the game LL-domination number $\gamma_{\mathrm{LLg}}(\mathcal{G})$

S-game:
$$\gamma_{
m tg}'(G)$$
, $\gamma_{
m Zg}'(G)$, $\gamma_{
m Lg}'(G)$, and $\gamma_{
m LLg}'(G)$

A motivation for these games:

Theorem (Brešar et al., 2017)

If G is a graph without isolated vertices, then $\gamma_{gr}^{Z} + Z(G) = |V(G)|$. Moreover, the complement of a (minimum) zero forcing set of G is a (maximum) Z-set of G and vice versa.

Hierarchy of the games

Theorem (Brešar et al., 2019)

If G is a graph without isolated vertices, then

- $\gamma_{\mathrm{Zg}}({\sf G}) \leq \gamma_{\mathrm{g}}({\sf G}) \leq \gamma_{\mathrm{Lg}}({\sf G}) \leq \gamma_{\mathrm{LLg}}({\sf G})$ and
- $\gamma_{\mathrm{Zg}}(\mathcal{G}) \leq \gamma_{\mathrm{tg}}(\mathcal{G}) \leq \gamma_{\mathrm{Lg}}(\mathcal{G}) \leq \gamma_{\mathrm{LLg}}(\mathcal{G}).$

· < /₽ > < ∃ >
Hierarchy of the games

Theorem (Brešar et al., 2019)

If G is a graph without isolated vertices, then

- $\gamma_{\mathrm{Zg}}({\mathsf{G}}) \leq \gamma_{\mathrm{g}}({\mathsf{G}}) \leq \gamma_{\mathrm{Lg}}({\mathsf{G}}) \leq \gamma_{\mathrm{LLg}}({\mathsf{G}})$ and
- $\gamma_{\mathrm{Zg}}(\mathsf{G}) \leq \gamma_{\mathrm{tg}}(\mathsf{G}) \leq \gamma_{\mathrm{Lg}}(\mathsf{G}) \leq \gamma_{\mathrm{LLg}}(\mathsf{G}).$

< (17) > < (2) > <

Hierarchy of the games

Smallest trees with pairwise different values:

top left tree : $\gamma_{Zg} = 5$, $\gamma_g = 6$, $\gamma_{tg} = 7$, $\gamma_{Lg} = 8$, $\gamma_{LLg} = 9$ top right tree : $\gamma_{Zg} = 5$, $\gamma_{tg} = 6$, $\gamma_g = 7$, $\gamma_{Lg} = 8$, $\gamma_{LLg} = 9$

Continuation principle

Theorem (Henning, K., Rall, 2015; Brešar et al., 2019)

If G is a graph without isolated vertices and $B \subseteq A \subseteq V(G)$, then

- $\gamma_{\mathrm{tg}}(G|A) \leq \gamma_{\mathrm{tg}}(G|B)$ and $\gamma'_{\mathrm{tg}}(G|A) \leq \gamma'_{\mathrm{tg}}(G|B)$
- $\gamma_{\mathrm{Zg}}(G|A) \leq \gamma_{\mathrm{Zg}}(G|B)$ and $\gamma'_{\mathrm{Zg}}(G|A) \leq \gamma'_{\mathrm{Zg}}(G|B)$
- $\gamma_{\mathrm{Lg}}(G|A) \leq \gamma_{\mathrm{Lg}}(G|B)$ and $\gamma'_{\mathrm{Lg}}(G|A) \leq \gamma'_{\mathrm{Lg}}(G|B)$
- $\gamma_{\mathrm{LLg}}(G|A) \leq \gamma_{\mathrm{LLg}}(G|B)$ and $\gamma'_{\mathrm{LLg}}(G|A) \leq \gamma'_{\mathrm{LLg}}(G|B)$

3/4-conjecture

Conjecture (Henning, K., Rall, 2017)

If G is a graph in which every component contains at least three vertices, then $\gamma_{tg}(G) \leq \frac{3}{4}n(G)$.

A (1) > A (1) > A

3/4-conjecture

Conjecture (Henning, K., Rall, 2017)

If G is a graph in which every component contains at least three vertices, then $\gamma_{tg}(G) \leq \frac{3}{4}n(G)$.

Theorem (Bujtás, Henning, Tuza, 2016)

The total domination game 3/4-conjecture is true over the class of graphs with minimum degree at least 2.

3/4-conjecture

Conjecture (Henning, K., Rall, 2017)

If G is a graph in which every component contains at least three vertices, then $\gamma_{tg}(G) \leq \frac{3}{4}n(G)$.

Theorem (Bujtás, Henning, Tuza, 2016)

The total domination game 3/4-conjecture is true over the class of graphs with minimum degree at least 2.

Theorem (Henning, Rall, 2016)

The total domination game 3/4-conjecture is true over the class of graphs G that satisfy both conditions (a) and (b): (a) the degree sum of adjacent vertices in G is at least 4 and (b) no two leaves are at distance exactly 4 apart in G.

< ⊡ > < ⊡ > <</p>

$\frac{3}{4}$ -conjecture cont'd

æ

$\frac{3}{4}$ -conjecture cont'd

Proposition

If
$$T \in \{P_4, P_8, T_{12}\}$$
, then $\gamma_{tg}(T) = \gamma'_{tg}(T) = \frac{3}{4}n(T)$.

Domination Games

(日) (同) (三) (三)

æ

Critical graphs

G is total domination game critical if $\gamma_{tg}(G) > \gamma_{tg}(G|v)$ holds for every $v \in V(G)$.

▲ □ ▶ ▲ □ ▶ ▲

Critical graphs

G is total domination game critical if $\gamma_{tg}(G) > \gamma_{tg}(G|v)$ holds for every $v \in V(G)$.

Theorem (Henning, K., Rall, 2018)

If $n \ge 3$, then C_n is γ_{tg} -critical if and only if $n \mod 6 \in \{0, 1, 3\}$.

· < /₽ > < ≥ > <

Critical graphs

G is total domination game critical if $\gamma_{tg}(G) > \gamma_{tg}(G|v)$ holds for every $v \in V(G)$.

Theorem (Henning, K., Rall, 2018)

If $n \ge 3$, then C_n is γ_{tg} -critical if and only if $n \mod 6 \in \{0, 1, 3\}$.

Theorem (Henning, K., Rall, 2018)

If $n \ge 2$, then the path P_n is γ_{tg} -critical if and only if $n \mod 6 \in \{2, 4\}$.

A □ > A □ > A

Critical graphs cont'd

<ロ> <同> <同> <同> < 三>

æ

Domination Games

Critical graphs cont'd

Theorem (Henning, K., 2018)

If $k \geq 1$, then the circular ladder CL_{4k} is $4k - \gamma_{tg}$ -critical.

Domination Games

Critical graphs cont'd

・ロト ・日下 ・ モト

æ

Domination Games

Critical graphs cont'd

Theorem (Henning, K., 2018)

If $k \geq 1$, then the Möbius ladder ML_{2k} is $2k - \gamma_{tg}$ -critical.

Domination Games

On Z-game

Theorem (Bujtás, Iršič, K., 2020)

If $n \geq 2$ and $\delta(G) \geq 1$, then $\gamma_{tg}(G) = \gamma_{Zg}(G \circ \overline{K}_n)$.

(日) (同) (三) (三)

э

On Z-game

Theorem (Bujtás, Iršič, K., 2020)

If $n \geq 2$ and $\delta(G) \geq 1$, then $\gamma_{tg}(G) = \gamma_{Zg}(G \circ \overline{K}_n)$.

G is weakly claw-free if every vertex $u \in V(G)$ has a neighbor that is not the center of a claw.

On Z-game

Theorem (Bujtás, Iršič, K., 2020)

If $n \geq 2$ and $\delta(G) \geq 1$, then $\gamma_{tg}(G) = \gamma_{Zg}(G \circ \overline{K}_n)$.

G is weakly claw-free if every vertex $u \in V(G)$ has a neighbor that is not the center of a claw. Note that weakly claw-free graphs properly contains the class of claw-free graphs.

On Z-game

Theorem (Bujtás, Iršič, K., 2020)

If $n \geq 2$ and $\delta(G) \geq 1$, then $\gamma_{tg}(G) = \gamma_{Zg}(G \circ \overline{K}_n)$.

G is weakly claw-free if every vertex $u \in V(G)$ has a neighbor that is not the center of a claw. Note that weakly claw-free graphs properly contains the class of claw-free graphs.

Theorem (Bujtás, Iršič, K., 2020)

If G is a weakly claw-free graph, then $\gamma_{Zg}(G) = \gamma_g(G)$ and $\gamma'_{Zg}(G) = \gamma'_g(G)$.

< ⊡ > < ⊡ > <</p>

Other games, open problems, conjectures

Domination Games

A (1) > A (1) > A

Selected other games

Transversal game in hypergraphs (Bujtás, Henning, Tuza, 2016)

A⊒ ▶ ∢ ∃

Selected other games

- Transversal game in hypergraphs (Bujtás, Henning, Tuza, 2016)
- Connected domination game (Borowiecki, Fiedorowicz, Sidorowicz, 2019)

Selected other games

- Transversal game in hypergraphs (Bujtás, Henning, Tuza, 2016)
- Connected domination game (Borowiecki, Fiedorowicz, Sidorowicz, 2019)
- Fractional domination game (Bujtás, Tuza, 2019)

Selected other games

- Transversal game in hypergraphs (Bujtás, Henning, Tuza, 2016)
- Connected domination game (Borowiecki, Fiedorowicz, Sidorowicz, 2019)
- Fractional domination game (Bujtás, Tuza, 2019)
- Maker-Breaker domination game (Duchêne, Gledel, Parreau, Renault, 2020)

Problems and conjectures

Conjecture (Henning, Löwenstein, 2017)

If F is an isolate-free forest satisfying $\gamma_g(F) = \frac{3}{5}n(F)$, then every component of F belongs to the family \mathcal{T} .

< 12 ▶ < 3

Problems and conjectures

Conjecture (Henning, Löwenstein, 2017)

If F is an isolate-free forest satisfying $\gamma_g(F) = \frac{3}{5}n(F)$, then every component of F belongs to the family \mathcal{T} .

Conjecture (Rall, 2019)

If G is a traceable graph, then $\gamma_{g}(G) \leq \left\lceil \frac{1}{2}n(G) \right\rceil$.

Problems and conjectures

Conjecture (Henning, Löwenstein, 2017)

If F is an isolate-free forest satisfying $\gamma_g(F) = \frac{3}{5}n(F)$, then every component of F belongs to the family \mathcal{T} .

Conjecture (Rall, 2019)

If G is a traceable graph, then $\gamma_{g}(G) \leq \lfloor \frac{1}{2}n(G) \rfloor$.

Problem

Determine the connected graphs G satisfying $\gamma_{tg}(G) = \frac{3}{4}n(G)$.

▲□ ► < □ ► </p>

Problems and conjectures cont'd

Problem

Characterize the γ_{tg} -critical trees.

Domination Games

A (1) > (1) > (1)

э

Problems and conjectures cont'd

Problem

Characterize the γ_{tg} -critical trees.

Conjecture (Bujtás, Iršič, K., 2020)

If T is a non-trivial tree, then $\gamma_{\mathrm{Zg}}(T) < \gamma_{\mathrm{Lg}}(T)$.

· < /₽ > < ∃ >

Problems and conjectures cont'd

Problem

Characterize the γ_{tg} -critical trees.

Conjecture (Bujtás, Iršič, K., 2020)

If T is a non-trivial tree, then $\gamma_{Zg}(T) < \gamma_{Lg}(T)$.

Conjecture (Brešar et al., 2019)

If G is a graph without isolated vertices, then $\gamma_{Lg}(G) \leq \frac{6}{7}n(G)$.

Thank you for your attention!

/⊒ > < ∃ >