A useful tool in combinatorics: Intersecting set-pair systems

Z. Füredi (newest results with A. Gyárfás and Z. Király)

Rényi Institute of Mathematics, Budapest, Hungary z-furedi@illinois.edu

September 14, 2020

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

A cross intersecting set pair system (SPS) of size m: $(\{A_i\}_{i=1}^m, \{B_i\}_{i=1}^m)$ with $A_i \cap B_i = \emptyset$ and $A_i \cap B_j \neq \emptyset$.

It is an important tool of extremal combinatorics. Bollobás' classical result states that $m \leq {a+b \choose a}$ if $|A_i| \leq a$ and $|B_i| \leq b$ for each *i*. Our central **problem** is to see how this bound changes with additional conditions (**proofs, applications and generalizations**).

< 回 > < 回 > < 回 >

A cross intersecting set pair system (SPS) of size m:

 $(\{A_i\}_{i=1}^m, \{B_i\}_{i=1}^m)$ with $A_i \cap B_i = \emptyset$ and $A_i \cap B_i \neq \emptyset$.

It is an important tool of extremal combinatorics. Bollobás' classical result states that $m \leq {a+b \choose a}$ if $|A_i| \leq a$ and $|B_i| \leq b$ for each *i*. Our central **problem** is to see how this bound changes with additional conditions (**proofs, applications and generalizations**). 1-cross intersecting set pair system: $|A_i \cap B_j| = 1$ for all $i \neq j$. We show connections to perfect graphs, clique partitions of graphs, and finite geometries.

(4回) (4回) (4回)

A cross intersecting set pair system (SPS) of size m:

 $(\{A_i\}_{i=1}^m, \{B_i\}_{i=1}^m)$ with $A_i \cap B_i = \emptyset$ and $A_i \cap B_i \neq \emptyset$.

It is an important tool of extremal combinatorics. Bollobás' classical result states that $m \leq {a+b \choose a}$ if $|A_i| \leq a$ and $|B_i| \leq b$ for each *i*. Our central **problem** is to see how this bound changes with additional conditions (**proofs, applications and generalizations**). 1-cross intersecting set pair system: $|A_i \cap B_j| = 1$ for all $i \neq j$. We show connections to perfect graphs, clique partitions of graphs, and finite geometries. The max size of a 1-cross intersecting SPS is

• at least $5^{n/2}$ for *n* even, a = b = n,

• equal to
$$\left(\lfloor \frac{n}{2} \rfloor + 1\right)\left(\lceil \frac{n}{2} \rceil + 1\right)$$
 if $a = 2$ and $b = n \ge 4$,

- at most $|\cup_{i=1}^m A_i|$,
- asymptotically n^2 if $\{A_i\}$ is a linear hypergraph

 $(|A_i \cap A_j| \leq 1 \text{ for } i \neq j).$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Some standard notation

$$[n] := \{1, 2, \dots, n\}$$

$$\binom{S}{k} :=$$
 set of *k*-sets, 2^S power set

 $\deg_G(x)$ degree of vertex x of graph G = (V, E)

 $N_G(x) \subset V$, neighborhood

 $T \subseteq V(\mathcal{H})$ is a cover (transversal) of the hypergraph $\mathcal{H} = (V, \mathcal{E})$ if $T \cap e \neq \emptyset \quad \forall e \in \mathcal{E}$.

 $\tau(\mathcal{H}) := \min |T|$. (covering number/transversal number).

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

Some standard notation

$$[n] := \{1, 2, \dots, n\}$$

$$\binom{S}{k} :=$$
 set of k-sets, 2^S power set

 $\deg_G(x)$ degree of vertex x of graph G = (V, E)

 $N_G(x) \subset V$, neighborhood

 $T \subseteq V(\mathcal{H})$ is a cover (transversal) of the hypergraph $\mathcal{H} = (V, \mathcal{E})$ if $T \cap e \neq \emptyset \quad \forall e \in \mathcal{E}$.

 $\tau(\mathcal{H}) := \min |T|$. (covering number/transversal number).

 $\mathcal{M} \subseteq \mathcal{E}$ is a matching (parallel edges) if $e \cap e' = \emptyset \ \forall e \neq e' \in \mathcal{M}$. $\nu(\mathcal{H}) := \min |\mathcal{M}|$. (matching number of \mathcal{H}).

 $\nu = 1 \iff \mathcal{H}$ is intersecting hpgr.

Cross intersecting set pair systems

A cross intersecting set pair system (SPS) of size m: $(\{A_i\}_{i=1}^m, \{B_i\}_{i=1}^m)$ with $A_i \cap B_i = \emptyset$ and $A_i \cap B_j \neq \emptyset$.

Theorem (Bollobás 1965)

 $(A_1, B_1), (A_2, B_2), \dots, (A_m, B_m)$ set pairs with $|A_i| \le a, |B_i| \le b$ and $A_i \cap B_i = \emptyset$, and (a + b)

$$A_i \cap B_j \neq \emptyset$$
 for all $i \neq j$, then $m \leq {a+b \choose a}$

Best possible: $\mathcal{A} := \begin{pmatrix} X \\ a \end{pmatrix}, \mathcal{B} := \begin{pmatrix} X \\ b \end{pmatrix},$

Z. Füredi (newest results with A. Gyárfás and Z. Király)

A useful tool in combinatorics: Intersecting set-pair systems

Proof of Bollobás' theorem

Conj'd by Berge/ Ehrenfeucht, Mycielsky 1973. Proof by Jaeger, Payan 1971, Tarjan 1975, Katona 1974, (Alon / Frankl). Given $(\mathcal{A}, \mathcal{B})$, a cross intersecting SPS. $X := \cup \mathcal{A} \cup \mathcal{B}$.

Figure: A type *i* permutation of *X*.

Call a permutation type *i* if $A_i <_{\pi} B_i$. Note that type $i \neq$ type *j*.

<□> < □> < □> < □> < □> □ ○ ○ ○ ○

Proof of Bollobás' theorem

Conj'd by Berge/ Ehrenfeucht, Mycielsky 1973. Proof by Jaeger, Payan 1971, Tarjan 1975, Katona 1974, (Alon / Frankl). Given $(\mathcal{A}, \mathcal{B})$, a cross intersecting SPS. $X := \cup \mathcal{A} \cup \mathcal{B}$.

Figure: A type *i* permutation of *X*.

Call a permutation type *i* if $A_i <_{\pi} B_i$. Note that type $i \neq$ type *j*. \mathbb{P} rob $(\pi \text{ is of type } i) = 1/{\binom{|A_i|+B_i|}{|A_i|}}$. Therefore

$$\sum_{i} \frac{1}{\binom{|A_i|+B_i|}{|A_i|}} \leq 1. \quad \Box$$

The aim of this lecture

1. To show that cross intersecting SPS is an important tool, by giving proofs, examples, generalizations, applications.

The aim of this lecture

1. To show that cross intersecting SPS is an important tool, by giving proofs, examples, generalizations, applications.

2.

To investigate 1-cross intersecting SPS. $(|A_i \cap B_j| = 1)$ New results are joint with Gyárfás and Király, and related to one of my favorite structures, finite affine and projective planes

Figure: The Fano plane.

DEF: Suppose \mathcal{H} is intersecting. S is a *kernel* of \mathcal{H} if

 $S \cap e \cap f \neq \emptyset \quad \forall e, f \in \mathcal{H}.$

E.g., the kernel of $\{\binom{S}{r}\}$ (for |S| < 2r) is itself, the kernel of $K_{1,m}$ (star) is a singleton.

▲□ → ▲ □ → ▲ □ → □

DEF: Suppose \mathcal{H} is intersecting. S is a *kernel* of \mathcal{H} if

 $S \cap e \cap f \neq \emptyset \quad \forall e, f \in \mathcal{H}.$

E.g., the kernel of $\{\binom{S}{r}\}$ (for |S| < 2r) is itself, the kernel of $K_{1,m}$ (star) is a singleton.

Theorem (Całczyńska-Karłowicz 1964)

 $\forall r \exists CK(r) < \infty$ such that: If \mathcal{H} is intersecting, $|e| \leq r \forall e \in \mathcal{H}$, then $\exists S, |S| \leq CK(r)$.

A useful tool in combinatorics: Intersecting set-pair systems

A proof by Katona's permutation method by Erdős, Lovász 1973.

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

A proof by Katona's permutation method by Erdős, Lovász 1973.

Given \mathcal{H} , intersecting, $|e| \leq r \ \forall e \in \mathcal{H}$, let $X := \cup \mathcal{H}$. Remove element *x* if $\mathcal{H}|(X \setminus \{x\})$ is still intersecting. Repeat until we get a critical *S*:

 $\forall x \in S \ \exists A(x), B(x) \in \mathcal{H}_{new} \ A(x) \cap B(x) = \{x\}.$

A proof by Katona's permutation method by Erdős, Lovász 1973.

Given \mathcal{H} , intersecting, $|e| \le r \ \forall e \in \mathcal{H}$, let $X := \bigcup \mathcal{H}$. Remove element *x* if $\mathcal{H}|(X \setminus \{x\})$ is still intersecting. Repeat until we get a critical *S*:

 $\forall x \in S \exists A(x), B(x) \in \mathcal{H}_{new} \quad A(x) \cap B(x) = \{x\}.$

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三

Figure: A type x permutation of X.

Call a permutation type x if $A(x) \leq_{\pi} B(x)$. Type $x \neq$ Type y. $\mathbb{P}rob(\pi \text{ is of type } x) = \dots, \quad \sum_{x \in S} \mathbb{P}rob \leq 1, \quad \frac{CK(r)}{r} \leq \frac{r}{2} \binom{2r-1}{r}.$

A proof by Katona's permutation method by Erdős, Lovász 1973.

Given \mathcal{H} , intersecting, $|e| \leq r \ \forall e \in \mathcal{H}$, let $X := \bigcup \mathcal{H}$. Remove element *x* if $\mathcal{H}|(X \setminus \{x\})$ is still intersecting. Repeat until we get a critical *S*:

 $\forall x \in S \exists A(x), B(x) \in \mathcal{H}_{new} \quad A(x) \cap B(x) = \{x\}.$

Figure: A type x permutation of X.

Call a permutation type x if $A(x) \leq_{\pi} B(x)$. Type $x \neq$ Type y. $\mathbb{P}rob(\pi \text{ is of type } x) = \dots$, $\sum_{x \in S} \mathbb{P}rob \leq 1$, $\frac{CK(r) \leq \frac{r}{2} \binom{2r-1}{r}}{r}$. New results, see: Kang, Ni, Shan 2017, Polcyn, Ruciński 2017, Henning, Yeo 2014, Tuza 1994/1996 (surveys), \dots

The kernel could be exponential

A construction by Erdős, Lovász 1973.

Take |V| = 2r - 2, $|Z| = \frac{1}{2} \binom{2r-2}{r-1}$, $V \cap Z = \emptyset$. \forall partition Π of V, |A| = |B| = r - 1 assign $z := z(\Pi) \in Z$.

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

The kernel could be exponential

A construction by Erdős, Lovász 1973.

Take |V| = 2r - 2, $|Z| = \frac{1}{2} {\binom{2r-2}{r-1}}$, $V \cap Z = \emptyset$. \forall partition Π of V, |A| = |B| = r - 1 assign $z := z(\Pi) \in Z$. Let $\{A(z), B(z)\} := \{A \cup \{z\}, B \cup \{z\}\}$. Then \mathcal{H} is intersecting, critical, $V(\mathcal{H})$ can not be shrunk

$$CK(r) \geq (2r-2) + rac{1}{2} {2r-2 \choose r-1} \quad \Box$$

New results, generalizations, see: Alon, Füredi 1987, Talbot 2004, Tuza 1994/1996 (surveys), ...

Z. Füredi (newest results with A. Gyárfás and Z. Király)

A useful tool in combinatorics: Intersecting set-pair systems

Sperner families, LYM inequality

DEF: $\mathcal{H} \subset 2^{[n]}$ is a **Sperner** family if $A \not\subset B \ \forall A, B \in \mathcal{H}$.

Theorem (Sperner)

 $|\mathcal{H}| \leq \binom{n}{\lfloor n/2 \rfloor}.$

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

Sperner families, LYM inequality

DEF: $\mathcal{H} \subset 2^{[n]}$ is a **Sperner** family if $A \not\subset B \ \forall A, B \in \mathcal{H}$.

Theorem (Sperner)

$$|\mathcal{H}| \leq \binom{n}{\lfloor n/2 \rfloor}$$
.

 $B = X \land A_j$
 $A \downarrow$

Theorem (LYM: Lubell, Yamamoto, Meshalkin)

$$\sum_{A\in\mathcal{H}}\frac{1}{\binom{n}{|A|}}\leq 1.$$

Proof: $(A, X \setminus A)$ is an cross intersetcing SPS. Equality iff $|A| = r \quad \forall A \in \mathcal{H}$.

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

• (10) • (10)

Cross intersecting *k***-tuples**

DEF: $(A_i, B_i, ..., Z_i)_{1 \le i \le m}$ form a family of cross intersecting *k*-tuples if these *k* sets are pairwise disjoint and $\forall i \ne j \quad \exists X \ne Y \in \{A, B, ..., Z\}$ such that $X_i \cap Y_i \ne \emptyset$.

Theorem (Tuza)

If $p_1 + \cdots + p_k = 1$, $\forall p_j > 0$, then

$$\sum_{i} p_1^{|A_i|} \cdots p_k^{|Z_i|} \leq 1$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Cross intersecting *k***-tuples**

DEF: $(A_i, B_i, ..., Z_i)_{1 \le i \le m}$ form a family of cross intersecting *k*-tuples if these *k* sets are pairwise disjoint and $\forall i \ne j \quad \exists X \ne Y \in \{A, B, ..., Z\}$ such that $X_i \cap Y_i \ne \emptyset$.

Theorem (Tuza)

If $p_1 + \cdots + p_k = 1$, $\forall p_j > 0$, then

$$\sum_{i} p_1^{|A_i|} \cdots p_k^{|Z_i|} \leq 1$$

Corollary (Take $p_1 = p_2 = 1/2$.)

 $\{A_i, B_i\}_{1 \le i \le m}$ cross intersecting SPS then $m \le 2^{\max\{|A_i|+|B_i|\}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Cross intersecting *k***-tuples**

DEF: $(A_i, B_i, ..., Z_i)_{1 \le i \le m}$ form a family of cross intersecting *k*-tuples if these *k* sets are pairwise disjoint and $\forall i \ne j \quad \exists X \ne Y \in \{A, B, ..., Z\}$ such that $X_i \cap Y_i \ne \emptyset$.

Theorem (Tuza)

If $p_1 + \cdots + p_k = 1$, $\forall p_j > 0$, then

$$\sum_{i} p_1^{|A_i|} \cdots p_k^{|Z_i|} \le 1$$

Corollary (Take $p_1 = p_2 = 1/2$.)

 $\{A_i, B_i\}_{1 \le i \le m}$ cross intersecting SPS then $m \le 2^{\max\{|A_i|+|B_i|\}}$.

Even more, it is enough to suppose that for all $i \neq j$ $\max\{|A_i \cap B_j|, |A_j \cap B_i|\} > 0.$

Other results on k-tuples: Alon 1985.

A geometric application, tangent simplices

DEF: $S, S' \subset \mathbb{R}^d$ are **tangent** simplices if int $S \cap$ int $S' = \emptyset$ and dim $(S \cap S') = d - 1$.

Theorem (Perles)

Suppose $S_1, \ldots, S_m \subset \mathbb{R}^d$ pairwise tangent. Then $m \leq 2^{d+1}$.

Four tangent triangles

J. Zaks:
$$h(2) = 4$$
, $h(3) = 8$, $h(d) \ge 2^d$

Tangent simplices, a proof using SPS

Perles' proof. Suppose $S_1, \ldots, S_m \subset \mathbb{R}^d$ pairwise tangent. Let H_1, \ldots, H_v all hyperplanes, tangent to some faces $(v \leq m(d+1))$.

イロト イヨト イヨト イヨト

Take a general point *O* and given S_i $A_i :=$ tangent hyperplanes H_{α} such that $O \in H_{\alpha}^+$ and $S_i \subset H_{\alpha}^+$. Then $\{|A_i \cap B_j|, |A_j \cap B_i|\} = \{0, 1\}$.

Pairs of disjoint subspaces

DEF: $A, B \subset \mathbb{R}^d$ are **disjoint** linear subspaces if $A \cap B = \{\mathbf{0}\}, \quad \text{i.e., } \dim(A + B) = \dim(A) + \dim(B).$ Non-disjoint: $\dim(A \cap B) \ge 1.$

Theorem (Lovász)

Suppose that $(A_i, B_i)_{1 \le i \le m}$ is a cross intersecting family of disjoint pairs of subspaces of dimensions a and b, i.e., $\dim(A_i) \le a, \dim(B_i) \le b$ and $\dim(A_i \cap B_i) = 0$ and $\dim(A_i \cap B_j) \ge 1$. Then $m \le {a+b \choose a}$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Pairs of disjoint subspaces

DEF: $A, B \subset \mathbb{R}^d$ are **disjoint** linear subspaces if $A \cap B = \{\mathbf{0}\}, \quad \text{i.e., } \dim(A + B) = \dim(A) + \dim(B).$ Non-disjoint: $\dim(A \cap B) \ge 1.$

Theorem (Lovász)

Suppose that $(A_i, B_i)_{1 \le i \le m}$ is a cross intersecting family of disjoint pairs of subspaces of dimensions a and b, i.e., $\dim(A_i) \le a, \dim(B_i) \le b$ and $\dim(A_i \cap B_i) = 0$ and $\dim(A_i \cap B_j) \ge 1$. Then $m \le {a+b \choose a}$.

Implies Bollobás. Given a cross intersecting SPS (A, B): take $d = | \cup A \cup B |$ pairwise orthogonal vectors $\{\mathbf{e}_t : t \in [d]\}$ and let $\widehat{A}_i := \text{Span}(\{\mathbf{e}_t : t \in A_i\})$.

< 日 > < 回 > < 回 > < 回 > < 回 > <

A consequence of Lovász geometric method

Theorem (ZF

 $(A_1, B_1), \dots, (A_m, B_m) \text{ set pairs with } |A_i| \le a, |B_i| \le b \text{ and}$ $A_i \cap B_i \le t, \text{ and } A_i \cap B_j > t \text{ for all } i \ne j.$ Then $m \le {a+b-2t \choose a-t}.$

Best possible: $V = X \cup T$, |X| = a + b - 2t, |T| = t and $\mathcal{A} := \{A \in \binom{V}{a}, T \subset A\}, \mathcal{B} := \{B \in \binom{V}{b}, T \subset B\},$

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

Another consequence, skew cross intersecting SPS's

Theorem (Frankl/ Kalai)

 $(A_1, B_1), \dots, (A_m, B_m) \text{ set pairs with } |A_i| \le a, |B_i| \le b \text{ and}$ $A_i \cap B_i = \emptyset, \text{ and } A_i \cap B_j \ne \emptyset \text{ for all } i < j.$ Then $m \le {a+b \choose a}.$

Best possible, but many more extremal families.

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

Another consequence, skew cross intersecting SPS's

Theorem (Frankl/ Kalai)

 $(A_1, B_1), \dots, (A_m, B_m)$ set pairs with $|A_i| \le a, |B_i| \le b$ and $A_i \cap B_i = \emptyset$, and $A_i \cap B_j \ne \emptyset$ for all [i < j]. Then $m \le {a+b \choose a}$.

Best possible, but many more extremal families.

True for cross *t*-intersecting, also for the subspace version. But no optimal LYM type inequality is known.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Another consequence, skew cross intersecting SPS's

Theorem (Frankl/ Kalai)

 $(A_1, B_1), \dots, (A_m, B_m)$ set pairs with $|A_i| \le a$, $|B_i| \le b$ and $A_i \cap B_i = \emptyset$, and $A_i \cap B_j \ne \emptyset$ for all i < j. Then $m \le {a+b \choose a}$.

Best possible, but many more extremal families.

True for cross *t*-intersecting, also for the subspace version. But no optimal LYM type inequality is known.

Alon and Kalai: used skew cross intersecting SPS's to prove the Upper Bound Theorem of McMullen: An exact formula for the max number of *t* dim faces of an *n*-vertex convex polytope with *n* vertices.

τ -critical graphs

DEF: (Gallai) The graph *G* is τ -critical if $\tau(G \setminus e) < \tau(G) \quad \forall e \in E(G)$ E.g., $C_{2\tau-1}$, $K_{\tau+1}$.

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

τ -critical graphs

DEF: (Gallai) The graph *G* is τ -critical if $\tau(G \setminus e) < \tau(G) \quad \forall e \in E(G)$

E.g., $C_{2\tau-1}$, $K_{\tau+1}$.

Theorem (Erdős, Gallai)

G is τ -critical, then $|V(G)| \leq 2\tau$.

Theorem (Erdős, Hajnal, Moon)

G is τ -critical, then $e(G) \leq \binom{\tau+1}{2}$.

Best possible. (Originally they stated it about \overline{G}).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

τ -critical graphs

DEF: (Gallai) The graph *G* is τ -critical if $\tau(G \setminus e) < \tau(G) \quad \forall e \in E(G)$

E.g., $C_{2\tau-1}$, $K_{\tau+1}$.

Theorem (Erdős, Gallai)

G is τ -critical, then $|V(G)| \leq 2\tau$.

Theorem (Erdős, Hajnal, Moon)

G is τ -critical, then $e(G) \leq \binom{\tau+1}{2}$.

Best possible. (Originally they stated it about \overline{G}).

Proof of the EHM thm: Consider A(e) := e for edge $e \in E(G)$, and B(e) := a covering set of the edges of $E(G) \setminus \{e\}$. They form a cross intersecting SPS of set sizes 2 and $\tau - 1$.

τ -critical hypergraphs

 $au(\mathcal{H} \setminus \boldsymbol{e}) < au(\mathcal{H}) \quad orall \boldsymbol{e} \in \boldsymbol{E}(\mathcal{H})$

E.g., Erdős-Lovász construction for CK(r), $K_r^{\tau+r-1}$.

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

< □ > < □ > < □ > □ =
τ -critical hypergraphs

 $au(\mathcal{H} \setminus \boldsymbol{e}) < au(\mathcal{H}) \quad orall \boldsymbol{e} \in \boldsymbol{E}(\mathcal{H})$

E.g., Erdős-Lovász construction for CK(r), $K_r^{\tau+r-1}$.

Theorem (Bollobás 1965)

 \mathcal{H} is τ -critical, r-uniform, then $|\mathbf{E}(\mathcal{H})| \leq \binom{\tau + r - 1}{r}$.

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

τ -critical hypergraphs

 $au(\mathcal{H} \setminus \boldsymbol{e}) < au(\mathcal{H}) \quad orall \boldsymbol{e} \in \boldsymbol{E}(\mathcal{H})$

E.g., Erdős-Lovász construction for CK(r), $K_r^{\tau+r-1}$.

Theorem (Bollobás 1965)

$$\mathcal{H}$$
 is τ -critical, r-uniform, then $|\boldsymbol{E}(\mathcal{H})| \leq \binom{ au+r-1}{r}$

What about $f(\tau, r) := \max |V(\mathcal{H})|$, \mathcal{H} is τ -critical, *r*-uniform.

<回> < 回> < 回> < 回> = □

τ -critical hypergraphs

 $au(\mathcal{H} \setminus \boldsymbol{e}) < au(\mathcal{H}) \quad orall \boldsymbol{e} \in \boldsymbol{E}(\mathcal{H})$

E.g., Erdős-Lovász construction for CK(r), $K_r^{\tau+r-1}$.

Theorem (Bollobás 1965)

 \mathcal{H} is τ -critical, r-uniform, then $|\mathbf{E}(\mathcal{H})| \leq \binom{\tau + r - 1}{r}$.

What about $f(\tau, r) := \max |V(\mathcal{H})|$, \mathcal{H} is τ -critical, *r*-uniform.

Theorem (Petruska, Szemerédi r = 3, Gyárfás, Lehel, Tuza 1982, finally Tuza)

 \mathcal{H} is τ -critical, then $|V(\mathcal{H})| \leq {\binom{\tau+r-1}{r-1}} + {\binom{\tau+r-2}{r-2}}$.

Best upper bound is still unknown.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

PART II. 1-cross intersecting families

DEF: A 1-cross intersecting set pair system (SPS) of size *m*: $(\{A_i\}_{i=1}^m, \{B_i\}_{i=1}^m)$ with $A_i \cap B_i = \emptyset$ and $|A_i \cap B_j| = 1$ $\forall i \neq j$.

Z. Füredi (newest results with A. Gyártás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

PART II. 1-cross intersecting families

DEF: A 1-cross intersecting set pair system (SPS) of size m: $(\{A_i\}_{i=1}^m, \{B_i\}_{i=1}^m)$ with $A_i \cap B_i = \emptyset$ and $|A_i \cap B_j| = 1$ $\forall i \neq j$. An SPS is (a, b)-bounded if $|A_i| \leq a$ and $|B_i| \leq b$ for each *i*.

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

PART II. 1-cross intersecting families

DEF: A *1-cross intersecting set pair system* (SPS) of size *m*: $(\{A_i\}_{i=1}^m, \{B_i\}_{i=1}^m)$ with $A_i \cap B_i = \emptyset$ and $|A_i \cap B_j| = 1$ $\forall i \neq j$. An SPS is (a, b)-bounded if $|A_i| \leq a$ and $|B_i| \leq b$ for each *i*.

A C_5 and $\overline{C_5}$ form a (2,2)-bounded 1-cross int' SPS. It is optimal: $m_2(*,*,1) = 5$

The edges of a C_{2n+1} and independent covers: a (2, *n*)-bounded 1-cross intersecting SPS.

The product construction

Proposition

If (a_1, b_1) -bounded and (a_2, b_2) -bounded 1-cross intersecting SPS exist with sizes m_1 and m_2 , then $(a_1 + a_2, b_1 + b_2)$ -bounded 1-cross intersecting SPS also exists of size $m_1 \cdot m_2$.

The product construction

Proposition

If (a_1, b_1) -bounded and (a_2, b_2) -bounded 1-cross intersecting SPS exist with sizes m_1 and m_2 , then $(a_1 + a_2, b_1 + b_2)$ -bounded 1-cross intersecting SPS also exists of size $m_1 \cdot m_2$.

Proof Given $(\mathcal{A}_1, \mathcal{B}_1)$ and $(\mathcal{A}_2, \mathcal{B}_2)$ on vertex sets V_{α} . Take m_1 pairwise disjoint ground sets $V_2^1, \ldots, V_2^{m_1}$ with copies $(\mathcal{A}_2^i, \mathcal{B}_2^i)$, e.g., $\mathcal{A}_2^i = \{A_{i,1}, \ldots, A_{i,m_2}\} \ldots$

The product construction

Proposition

If (a_1, b_1) -bounded and (a_2, b_2) -bounded 1-cross intersecting SPS exist with sizes m_1 and m_2 , then $(a_1 + a_2, b_1 + b_2)$ -bounded 1-cross intersecting SPS also exists of size $m_1 \cdot m_2$.

Proof Given (A_1, B_1) and (A_2, B_2) on vertex sets V_{α} . Take m_1 pairwise disjoint ground sets $V_2^1, \ldots, V_2^{m_1}$ with copies (A_2^i, B_2^i) , e.g., $A_2^i = \{A_{i,1}, \ldots, A_{i,m_2}\}$... The pairs $A'_{i,j} = A_i \cup A_{i,j}, B'_{i,j} = B_i \cup B_{i,j}$ form a 1-cross intersecting SPS, $|A'_{i,j}| \le a_1 + a_2$ and $|B'_{i,j}| \le b_1 + b_2$.

1-cross intersecting SPS can be exponential

Corollary

There exists an (n, n)-bounded 1-cross intersecting SPS of size $5^{n/2}$ if n is even and of size $2 \cdot 5^{(n-1)/2}$ if n is odd.

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

1-cross intersecting SPS can be exponential

Corollary

There exists an (n, n)-bounded 1-cross intersecting SPS of size $5^{n/2}$ if n is even and of size $2 \cdot 5^{(n-1)/2}$ if n is odd.

The product construction gives a (3,3)-bounded 1-cross intersecting SPS of size 10. We have another example, the pairs $(\{i, i+1, i+2\}, \{i+3, i+6, i+9\})$ taken (mod 10) has 10 vertices.

1-cross intersecting SPS can be exponential

Corollary

There exists an (n, n)-bounded 1-cross intersecting SPS of size $5^{n/2}$ if n is even and of size $2 \cdot 5^{(n-1)/2}$ if n is odd.

The product construction gives a (3,3)-bounded 1-cross intersecting SPS of size 10.

We have another example, the pairs

 $(\{i, i+1, i+2\}, \{i+3, i+6, i+9\})$ taken (mod 10) has 10 vertices.

Samuel Spiro (sspiro@ucsd.edu) informed us that his computer program successfully checked that 10 is indeed the largest size,

 $m_1(*,*,1) = 2,$ $m_2(*,*,1) = 5,$ $m_3(*,*,1) = 10,$ $m_4(*,*,1) \ge 25.$

▲御▶ ▲理▶ ▲理▶

Fekete's Lemma on subadditive sequences implies

$$\sqrt{5} \leq \lim_{n \to \infty} \left(m_n(*,*,1) \right)^{1/n} = \exists \quad \leq 4.$$

(日) (日) (日)

Fekete's Lemma on subadditive sequences implies

$$\sqrt{5} \leq \lim_{n\to\infty} \left(m_n(*,*,1) \right)^{1/n} = \exists \le 4.$$

A challenging **problem** is to decrease essentially Bollobás' upper bound:

Conjecture There exists a positive ε such that $m_n(*,*,1) \le (1-\varepsilon)\binom{2n}{n}$ for every $n \ge 2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition ($m \leq |\cup A|$)

Let $(\mathcal{A}, \mathcal{B})$ be 1-cross intersecting, $V := \bigcup \mathcal{A}$. The char. vectors of the edges of \mathcal{A} are linearly independent in \mathbb{R}^{V} .

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

< 同 > < 回 > < 回 >

Proposition ($m \leq |\cup A|$)

Let $(\mathcal{A}, \mathcal{B})$ be 1-cross intersecting, $V := \bigcup \mathcal{A}$. The char. vectors of the edges of \mathcal{A} are linearly independent in \mathbb{R}^{V} .

Let \mathbf{a}_i (resp. \mathbf{b}_i) denote the characteristic vector of A_i (resp. B_i), $\mathbf{a}_i(v) = 1$ for $v \in V$ if and only if $v \in A_i$. Otherwise $\mathbf{a}_i(v) = 0$.

Proposition ($m \leq |\cup A|$)

Let $(\mathcal{A}, \mathcal{B})$ be 1-cross intersecting, $V := \bigcup \mathcal{A}$. The char. vectors of the edges of \mathcal{A} are linearly independent in \mathbb{R}^{V} .

Let \mathbf{a}_i (resp. \mathbf{b}_i) denote the characteristic vector of A_i (resp. B_i), $\mathbf{a}_i(v) = 1$ for $v \in V$ if and only if $v \in A_i$. Otherwise $\mathbf{a}_i(v) = 0$. Suppose

$$\sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{0}.$$

Proposition ($m \leq |\cup A|$)

Let $(\mathcal{A}, \mathcal{B})$ be 1-cross intersecting, $V := \bigcup \mathcal{A}$. The char. vectors of the edges of \mathcal{A} are linearly independent in \mathbb{R}^{V} .

Let \mathbf{a}_i (resp. \mathbf{b}_i) denote the characteristic vector of A_i (resp. B_i), $\mathbf{a}_i(v) = 1$ for $v \in V$ if and only if $v \in A_i$. Otherwise $\mathbf{a}_i(v) = 0$. Suppose

$$\sum_{i=1}^{m} \lambda_i \mathbf{a}_i = \mathbf{0}.$$

Take the dot product with \mathbf{b}_j . Since $|A_i \cap B_j| = 1$ for $i \neq j$ and $|A_j \cap B_j| = 0$, we get

$$\left(\sum_{i=1}^m \lambda_i\right) - \lambda_j = \mathbf{0}.$$

・ 白 ・ ・ ヨ ・ ・ 日 ・

Proposition ($m \leq |\cup A|$)

Let $(\mathcal{A}, \mathcal{B})$ be 1-cross intersecting, $V := \cup \mathcal{A}$. The char. vectors of the edges of \mathcal{A} are linearly independent in \mathbb{R}^{V} .

Let \mathbf{a}_i (resp. \mathbf{b}_i) denote the characteristic vector of A_i (resp. B_i), $\mathbf{a}_i(v) = 1$ for $v \in V$ if and only if $v \in A_i$. Otherwise $\mathbf{a}_i(v) = 0$. Suppose

$$\sum_{i=1}^{m} \lambda_i \mathbf{a}_i = \mathbf{0}.$$

Take the dot product with \mathbf{b}_j . Since $|A_i \cap B_j| = 1$ for $i \neq j$ and $|A_j \cap B_j| = 0$, we get

$$\left(\sum_{i=1}^m \lambda_i\right) - \lambda_j = \mathbf{0}.$$

Add up for all *j*: $(m-1) \sum_{i=1}^{m} \lambda_i = 0$, consequently $\sum_{i=1}^{m} \lambda_i = 0$ and thus $\lambda_j = 0$ for all *j*.

Z. Füredi (newest results with A. Gyárfás and Z. Király)

A useful tool in combinatorics: Intersecting set-pair systems

Lovász' characterization of perfect graphs

A special case of the previous Proposition can be used in the non-trivial part of Gasparyan's 1996 proof of Lovász's theorem:

A graph G is perfect if and only if

 $|V(H)| \le \alpha(H)\omega(H) \tag{1}$

holds for all induced subgraphs H of G.

Lovász' characterization of perfect graphs

A special case of the previous Proposition can be used in the non-trivial part of Gasparyan's 1996 proof of Lovász's theorem:

A graph G is perfect if and only if

 $|V(H)| \le \alpha(H)\omega(H) \tag{1}$

holds for all induced subgraphs H of G.

Proof. In a minimal imperfect graph *G* there is a 1-cross intersecting SPS of size $m = \alpha(G)\omega(G) + 1$ defined by independent sets and complete subgraphs. By the previous Proposition, $|V(G)| \ge \alpha(G)\omega(G) + 1$, contradicting (1).

Lovász' characterization of perfect graphs

A special case of the previous Proposition can be used in the non-trivial part of Gasparyan's 1996 proof of Lovász's theorem:

A graph G is perfect if and only if

$$|V(H)| \le \alpha(H)\omega(H) \tag{1}$$

holds for all induced subgraphs H of G.

Proof. In a minimal imperfect graph *G* there is a 1-cross intersecting SPS of size $m = \alpha(G)\omega(G) + 1$ defined by independent sets and complete subgraphs. By the previous Proposition, $|V(G)| \ge \alpha(G)\omega(G) + 1$, contradicting (1).

Corollary (Lovász)

A graph is perfect if and only if its complement is perfect.

(2, *n*)-*bounded* 1-cross intersecting SPS

Theorem (The case of A is a graph.)

Let $n \ge 4$, and let (A, B) be a (2, n)-bounded 1-cross intersecting SPS of size m. Then

$$m \leq \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) \left(\left\lceil \frac{n}{2} \right\rceil + 1 \right).$$

Best possible. For n = 2, 3 the exact values are m = 5, 7.

An extremal family: $\left|\frac{n}{2}\right| + 1$ copies of stars with $\left[\frac{n}{2}\right] + 1$ edges.

A useful tool in combinatorics: Intersecting set-pair systems

Linear hypergraphs and cross 1-intersecting SPS

A hypergraph \mathcal{H} is called *linear* if the intersection of any two different edges has at most one vertex.

E.g., affine planes AG(2,q). Usually $V(AG(2,q)) = \mathbb{F}_q^2$,

 q^2 vertices and the hyperedges = $q^2 + q$ lines.

< □ > < □ > < □ > . □ =

Linear hypergraphs and cross 1-intersecting SPS

A hypergraph \mathcal{H} is called *linear* if the intersection of any two different edges has at most one vertex.

E.g., affine planes AG(2, q). Usually $V(AG(2, q)) = \mathbb{F}_q^2$, q^2 vertices and the hyperedges = $q^2 + q$ lines.

 \mathcal{H} is called 1-*intersecting* if $|H \cap H'| = 1$ for all $H, H' \in \mathcal{H}$ whenever $H \neq H'$.

E.g., finite projective planes PG(2, q).

▲母▶▲国▶▲国▶ 国 のQで

Linear hypergraphs and cross 1-intersecting SPS

A hypergraph \mathcal{H} is called *linear* if the intersection of any two different edges has at most one vertex.

E.g., affine planes AG(2, q). Usually $V(AG(2, q)) = \mathbb{F}_q^2$, q^2 vertices and the hyperedges = $q^2 + q$ lines.

 \mathcal{H} is called 1-*intersecting* if $|H \cap H'| = 1$ for all $H, H' \in \mathcal{H}$ whenever $H \neq H'$. E.g., finite projective planes PG(2, q).

If one of $(\mathcal{A}, \mathcal{B})$, say \mathcal{A} , in an SPS is linear, then (without any assumption on $|B_i \cap B_j|, |A_i \cap B_j|$).

Proposition (26)

The size of an (n, n)-bounded cross intersecting SPS (A, B) with linear A is at most $n^2 + n + 1$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Double stars

The vertex set of a *double star of size s* consist of $\{v_{i,j} \mid 1 \leq i, j \leq s, i \neq j\}$ and two additional vertices w_a and w_b . Define for $i \in [s]$ $A_i := \{w_a\} \cup \{v_{i,j} \mid 1 \leq j \leq s, j \neq i\}$ and $B_i := \{w_b\} \cup \{v_{j,i} \mid 1 \leq j \leq s, j \neq i\}.$

 $(\mathcal{A}, \mathcal{B})$ is a 1-cross intersecting SPS of size *s* containing *s*-element sets such that both \mathcal{A} and \mathcal{B} are 1-intersecting.

Notation and general setting

Let a, b > 0 and I_A, I_B, I_{cross} three sets of non-negative integers. Let $m(a, b, I_A, I_B, I_{cross})$ the maximum size m of a cross intersecting SPS $(\mathcal{A}, \mathcal{B})$ with the following conditions.

i) $A_i \cap B_i = \emptyset$ for every $1 \le i \le m$,

ii-iii) $|A_i| \le a, |B_i| \le b$ for every $1 \le i \le m$,

iv-v) $|A_i \cap A_j| \in I_A$, $|B_i \cap B_j| \in I_B$ for every $1 \le i \ne j \le m$,

vi) $0 < |A_i \cap B_j| \in I_{cross}$ for every $1 \le i \ne j \le m$.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

Notation and general setting

Let a, b > 0 and I_A, I_B, I_{cross} three sets of non-negative integers. Let $m(a, b, I_A, I_B, I_{cross})$ the maximum size m of a cross intersecting SPS $(\mathcal{A}, \mathcal{B})$ with the following conditions.

i)
$$A_i \cap B_i = \emptyset$$
 for every $1 \le i \le m$,

ii-iii) $|A_i| \le a, |B_i| \le b$ for every $1 \le i \le m$,

iv-v) $|A_i \cap A_j| \in I_A$, $|B_i \cap B_j| \in I_B$ for every $1 \le i \ne j \le m$,

vi) $0 < |A_i \cap B_j| \in I_{cross}$ for every $1 \le i \ne j \le m$.

We suppose that $0 \notin I_{cross}$, and $m \ge 2$. If a constraint in iv)–vi) is vacuous (i.e., $\{0, 1, ..., |X|\} \subseteq I_X$ or $\{1, ..., \min\{a, b\}\} \subseteq I_{cross}$) then we use the symbol *

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Notation and general setting

Let a, b > 0 and I_A, I_B, I_{cross} three sets of non-negative integers. Let $m(a, b, I_A, I_B, I_{cross})$ the maximum size m of a cross intersecting SPS $(\mathcal{A}, \mathcal{B})$ with the following conditions.

i)
$$A_i \cap B_i = \emptyset$$
 for every $1 \le i \le m$,

ii-iii) $|A_i| \le a, |B_i| \le b$ for every $1 \le i \le m$,

iv-v) $|A_i \cap A_j| \in I_A$, $|B_i \cap B_j| \in I_B$ for every $1 \le i \ne j \le m$,

vi)
$$0 < |A_i \cap B_j| \in I_{cross}$$
 for every $1 \le i \ne j \le m$.

We suppose that $0 \notin I_{cross}$, and $m \ge 2$. If a constraint in iv)–vi) is vacuous (i.e., $\{0, 1, ..., |X|\} \subseteq I_X$ or $\{1, ..., \min\{a, b\}\} \subseteq I_{cross}$) then we use the symbol *Bollobás' theorem:

$$m(a,b,*,*,*)=\binom{a+b}{a},$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Our Theorem on p.25 states (for $n \ge 4$)

$$m(2, n, *, *, 1) = \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) \left(\left\lceil \frac{n}{2} \right\rceil + 1 \right).$$

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Our Theorem on p.25 states (for $n \ge 4$)

$$m(2, n, *, *, 1) = \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) \left(\left\lceil \frac{n}{2} \right\rceil + 1 \right).$$

For the case a = b = n and use the abbreviation

 $m_n(I_A, I_B, I_{cross}) := m(n, n, I_A, I_B, I_{cross}).$

・ 回 ・ ・ 目 ・ ・ 日 ・

Our Theorem on p.25 states (for $n \ge 4$)

$$m(2, n, *, *, 1) = \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) \left(\left\lceil \frac{n}{2} \right\rceil + 1 \right).$$

For the case a = b = n and use the abbreviation

$$m_n(I_A, I_B, I_{cross}) := m(n, n, I_A, I_B, I_{cross}).$$

 $I_A = \{0, 1\}$: (A is a linear hypergraph), we write '01-int' $I_A = \{1\}$: (A is a 1-intersecting hypergraph), we write '1-int' for $I_{cross} = \{1\}$ we use just '1'.

A (1) < A (1) < A (1) </p>

Our Theorem on p.25 states (for $n \ge 4$)

$$m(2, n, *, *, 1) = \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) \left(\left\lceil \frac{n}{2} \right\rceil + 1 \right).$$

For the case a = b = n and use the abbreviation

$$m_n(I_A, I_B, I_{cross}) := m(n, n, I_A, I_B, I_{cross}).$$

・ 戸 ト ・ 三 ト ・ 三 ト

The origin of the new problems, The *thickness* of a clique partitions

Given a graph *G*, a clique (Biclique) partition of E(G)= parts are complete (complete bipartite) graphs. The *thickness* of a partition is the maximum *s* such that every vertex $x \in V(G)$ appears in at most *s* cliques (bicliques).

< □→ < □→ < □→ = □

The origin of the new problems, The *thickness* of a clique partitions

Given a graph *G*, a clique (Biclique) partition of E(G)= parts are complete (complete bipartite) graphs. The *thickness* of a partition is the maximum *s* such that every vertex $x \in V(G)$ appears in at most *s* cliques (bicliques).

AIM: minimize thickness.
The origin of the new problems, The *thickness* of a clique partitions

Given a graph *G*, a clique (Biclique) partition of E(G)= parts are complete (complete bipartite) graphs. The *thickness* of a partition is the maximum *s* such that every vertex $x \in V(G)$ appears in at most *s* cliques (bicliques). AIM: minimize thickness. 'Most difficult' cases:

 T_{2m} (cocktail party graph) = K_{2m} a perfect matching.

 B_{2m} is obtained from $K_{m,m}$ by removing a perfect matching.

- ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 오 ○

The origin of the new problems, The *thickness* of a clique partitions

Given a graph *G*, a clique (Biclique) partition of E(G)= parts are complete (complete bipartite) graphs. The *thickness* of a partition is the maximum *s* such that every vertex $x \in V(G)$ appears in at most *s* cliques (bicliques).

AIM: minimize thickness. 'Most difficult' cases: T_{2m} (cocktail party graph) = K_{2m} a perfect matching. B_{2m} is obtained from $K_{m,m}$ by removing a perfect matching.

Theorem (just taking dual hypergraphs)

The max m that T_{2m} has a clique partition of thickness n = the maximum size of an (n, n)-bounded 1-cross intersecting SPS in which $(\mathcal{A}, \mathcal{B})$ are also 1-intersecting. = $m_n(1-\text{int}, 1-\text{int}, 1)$

The origin of the new problems, The *thickness* of a clique partitions

Given a graph *G*, a clique (Biclique) partition of E(G)= parts are complete (complete bipartite) graphs. The *thickness* of a partition is the maximum *s* such that every vertex $x \in V(G)$ appears in at most *s* cliques (bicliques).

AIM: minimize thickness. 'Most difficult' cases: T_{2m} (cocktail party graph) = K_{2m} a perfect matching. B_{2m} is obtained from $K_{m,m}$ by removing a perfect matching.

Theorem (just taking dual hypergraphs)

The max m that T_{2m} has a clique partition of thickness n = the maximum size of an (n, n)-bounded 1-cross intersecting SPS in which $(\mathcal{A}, \mathcal{B})$ are also 1-intersecting. = $m_n(1-\text{int}, 1-\text{int}, 1)$ The maximum m such that B_{2m} has a biclique partition of thickness n is $m_n(*, *, 1)$.

(日)

The case of both A and B are linear hypergraphs

Then the bound of Prop. (26) can be approximately halved.

Theorem (a bit complicated double counting)

Suppose that $(\mathcal{A}, \mathcal{B})$ is an (n, n)-bounded 1-cross intersecting SPS of size m such that both \mathcal{A} and \mathcal{B} are linear hypergraphs. Then $m \leq \frac{1}{2}n^2 + n + 1$. I.e., $m_n(1-\text{int}, 1-\text{int}, 1) \leq \frac{1}{2}n^2 + n + 1$.

The case of both A and B are linear hypergraphs

Then the bound of Prop. (26) can be approximately halved.

Theorem (a bit complicated double counting)

Suppose that $(\mathcal{A}, \mathcal{B})$ is an (n, n)-bounded 1-cross intersecting SPS of size m such that both \mathcal{A} and \mathcal{B} are linear hypergraphs. Then $m \leq \frac{1}{2}n^2 + n + 1$. I.e., $m_n(1-\text{int}, 1-\text{int}, 1) \leq \frac{1}{2}n^2 + n + 1$.

Bellow we give three constructive lower bounds, large cross intersecting SPS such that A is an intersecting linear hypergraph, showing that our results asymptotically the best possible, i.e.,

 $m_n(1-int, *, 1)$ and $m_n(1-int, 1-int, *) = n^2 - o(n^2)$, and $m_n(1-int, 1-int, 1) = \frac{1}{2}n^2 - o(n^2)$.

(We only give details of the boxed statement.)

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

We prove the lower bound for m_n in three steps. (For each of the three statements) like Drake/Blokhuis/others

同ト・モト・モ

We prove the lower bound for m_n in three steps. (For each of the three statements) like Drake/Blokhuis/others

The function $m_n(I_A, I_B, I_{cross})$ is monotone increasing in *n*, we need only for a dense set of special values of *n*.

• Im • • m • • m

We prove the lower bound for m_n in three steps. (For each of the three statements) like Drake/Blokhuis/others

The function $m_n(I_A, I_B, I_{cross})$ is monotone increasing in *n*, we need only for a dense set of special values of *n*.

First, considering the **double star** we have $m_n \ge n$ (for all three functions and for all *n*).

< 回 > < 回 > < 回 >

We prove the lower bound for m_n in three steps. (For each of the three statements) like Drake/Blokhuis/others

The function $m_n(I_A, I_B, I_{cross})$ is monotone increasing in *n*, we need only for a dense set of special values of *n*.

First, considering the **double star** we have $m_n \ge n$ (for all three functions and for all *n*).

From now on, we only give details for the case (1-int, 1-int, *). We need $(\mathcal{A}, \mathcal{B})$ such that $|\mathcal{A}_i| = n$, $|\mathcal{B}_i| = n$ for every $i \in m$, both \mathcal{A} and \mathcal{B} are 1-intersecting of sizes $m_n = n^2 - o(n^2)$. Both \mathcal{A} and \mathcal{B} are almost projective planes!,

(1日) (1日) (1日)

We prove the lower bound for m_n in three steps. (For each of the three statements) like Drake/Blokhuis/others

The function $m_n(I_A, I_B, I_{cross})$ is monotone increasing in *n*, we need only for a dense set of special values of *n*.

First, considering the **double star** we have $m_n \ge n$ (for all three functions and for all *n*).

From now on, we only give details for the case (1-int, 1-int, *). We need $(\mathcal{A}, \mathcal{B})$ such that $|A_i| = n$, $|B_i| = n$ for every $i \in m$, both \mathcal{A} and \mathcal{B} are 1-intersecting of sizes $m_n = n^2 - o(n^2)$. Both \mathcal{A} and \mathcal{B} are almost projective planes!, and $A_i \cap B_i = \emptyset \ \forall i \in [m]$, and $A_i \cap B_i \neq \emptyset$ for every $1 \le i \ne j \le m$.

(日本) (日本) (日本)

Second step: The product of an affine plane and the double star

AG(2, q) has q + 1 directions (parallel classes). Each class has q lines. Let δ be a direction. $L_{1,\delta}, \dots, L_{q,\delta}$ the lines of this class.

Take q + 1 copies of the double star of size q.

Second step: The product of an affine plane and the double star

AG(2, q) has q + 1 directions (parallel classes). Each class has q lines. Let δ be a direction.

 $L_{1,\delta},\ldots,L_{q,\delta}$ the lines of this class.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Take q + 1 copies of the double star of size q. Let $A_{i,\delta} := L_{i,\delta} \cup A_i^{\delta}$ and $B_{i,\delta} := L_{i+1,\delta} \cup B_i^{\delta}$. We obtain $m_{2q} \ge q^2 + q$. Call this construction $\mathcal{H}(2q)$.

Cross intersecting almost projective planes Third step.

A B F A B F

Suppose $p + 2q \le n , ($ *p*,*q* $primes) where <math>p \le q^2 + q$ and $n - O(n^{5/8}) .$

Cross intersecting almost projective planes Third step.

A D A D A D A

Suppose $p + 2q \le n , <math>(p, q \text{ primes})$ where $p \le q^2 + q$ and $n - O(n^{5/8}) .$

We use the same kind of extension again to extend the affine plane AG(2, p) with (p+1) copies of $\mathcal{H}(2q)$, the 2*q*-uniform construction from Step 2.

Cross intersecting almost projective planes Third step.

< 回 > < 回 > < 回 >

Suppose $p + 2q \le n , <math>(p, q \text{ primes})$ where $p \le q^2 + q$ and $n - O(n^{5/8}) .$

We use the same kind of extension again to extend the affine plane AG(2, p) with (p+1) copies of $\mathcal{H}(2q)$, the 2*q*-uniform construction from Step 2. The size of $\mathcal{H}(2q)$ is $q^2 + q \ge p$ thus we need only the first *p* set pairs from it.

The End

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

・ロト ・日 ・ ・ ヨ ・ ・

Э

크

The End

THANKS FOR YOUR ATTENTION!

Z. Füredi (newest results with A. Gyárfás and Z. Király) A useful tool in combinatorics: Intersecting set-pair systems

< 回 > < 回 > < 回