A useful tool in combinatorics: Intersecting set-pair systems

Z. Füredi
(newest results with A. Gyárfás and Z. Király)

Rényi Institute of Mathematics, Budapest, Hungary
z-furedi@illinois.edu

September 14, 2020

A cross intersecting set pair system (SPS) of size m:

$$
\left(\left\{A_{i}\right\}_{i=1}^{m},\left\{B_{i}\right\}_{i=1}^{m}\right) \text { with } A_{i} \cap B_{i}=\emptyset \text { and } A_{i} \cap B_{j} \neq \emptyset .
$$

It is an important tool of extremal combinatorics. Bollobás' classical result states that $m \leq\binom{ a+b}{a}$ if $\left|A_{i}\right| \leq a$ and $\left|B_{i}\right| \leq b$ for each i. Our central problem is to see how this bound changes with additional conditions (proofs, applications and generalizations).

A cross intersecting set pair system (SPS) of size m:

$$
\left(\left\{A_{i}\right\}_{i=1}^{m},\left\{B_{i}\right\}_{i=1}^{m}\right) \text { with } A_{i} \cap B_{i}=\emptyset \text { and } A_{i} \cap B_{j} \neq \emptyset .
$$

It is an important tool of extremal combinatorics. Bollobás' classical result states that $m \leq\binom{ a+b}{a}$ if $\left|A_{i}\right| \leq a$ and $\left|B_{i}\right| \leq b$ for each i. Our central problem is to see how this bound changes with additional conditions (proofs, applications and generalizations).
1 -cross intersecting set pair system: $\left|A_{i} \cap B_{j}\right|=1$ for all $i \neq j$. We show connections to perfect graphs, clique partitions of graphs, and finite geometries.

A cross intersecting set pair system (SPS) of size m:

$$
\left(\left\{A_{i}\right\}_{i=1}^{m},\left\{B_{i}\right\}_{i=1}^{m}\right) \text { with } A_{i} \cap B_{i}=\emptyset \text { and } A_{i} \cap B_{j} \neq \emptyset .
$$

It is an important tool of extremal combinatorics. Bollobás' classical result states that $m \leq\binom{ a+b}{a}$ if $\left|A_{i}\right| \leq a$ and $\left|B_{i}\right| \leq b$ for each i.
Our central problem is to see how this bound changes with additional conditions (proofs, applications and generalizations).
1 -cross intersecting set pair system: $\left|A_{i} \cap B_{j}\right|=1$ for all $i \neq j$. We show connections to perfect graphs, clique partitions of graphs, and finite geometries. The max size of a 1 -cross intersecting SPS is

- at least $5^{n / 2}$ for n even, $a=b=n$,
- equal to $\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)\left(\left\lceil\frac{n}{2}\right\rceil+1\right)$ if $a=2$ and $b=n \geq 4$,
- at most $\left|\cup_{i=1}^{m} A_{i}\right|$,
- asymptotically n^{2} if $\left\{A_{i}\right\}$ is a linear hypergraph

$$
\left(\left|A_{i} \cap A_{j}\right| \leq 1 \text { for } i \neq j\right) .,
$$

$[n]:=\{1,2, \ldots, n\}$
$\binom{S}{k}:=$ set of k-sets, 2^{S} power set $\operatorname{deg}_{G}(x)$ degree of vertex x of graph $G=(V, E)$
$N_{G}(x) \subset V$, neighborhood
$T \subseteq V(\mathcal{H})$ is a cover (transversal) of the hypergraph $\mathcal{H}=(V, \mathcal{E})$ if $T \cap e \neq \emptyset \quad \forall e \in \mathcal{E}$.
$\tau(\mathcal{H}):=\min |T| . \quad$ (covering number/transversal number).
$[n]:=\{1,2, \ldots, n\}$
$\binom{S}{k}:=$ set of k-sets, 2^{S} power set
$\operatorname{deg}_{G}(x)$ degree of vertex x of graph $G=(V, E)$
$N_{G}(x) \subset V$, neighborhood
$T \subseteq V(\mathcal{H})$ is a cover (transversal) of the hypergraph $\mathcal{H}=(V, \mathcal{E})$ if $T \cap e \neq \emptyset \quad \forall e \in \mathcal{E}$.
$\tau(\mathcal{H}):=\min |T| . \quad$ (covering number/transversal number).
$\mathcal{M} \subseteq \mathcal{E}$ is a matching (parallel edges) if $e \cap e^{\prime}=\emptyset \forall e \neq e^{\prime} \in \mathcal{M}$. $\nu(\mathcal{H}):=\min |\mathcal{M}|$. (matching number of $\mathcal{H})$.
$\nu=1 \Longleftrightarrow \mathcal{H}$ is intersecting hpgr.

Cross intersecting set pair systems

A cross intersecting set pair system (SPS) of size m:

$$
\left(\left\{A_{i}\right\}_{i=1}^{m},\left\{B_{i}\right\}_{i=1}^{m}\right) \text { with } A_{i} \cap B_{i}=\emptyset \text { and } A_{i} \cap B_{j} \neq \emptyset .
$$

Theorem (Bollobás 1965)

$\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right), \ldots,\left(A_{m}, B_{m}\right)$ set pairs with
$\left|A_{i}\right| \leq a,\left|B_{i}\right| \leq b$ and
$A_{i} \cap B_{i}=\emptyset$, and
$A_{i} \cap B_{j} \neq \emptyset$ for all $i \neq j$, then $m \leq\binom{ a+b}{a}$.
Best possible:
$\mathcal{A}:=\binom{X}{a}, \mathcal{B}:=\binom{X}{b}$,

Conj'd by Berge/ Ehrenfeucht, Mycielsky 1973. Proof by Jaeger, Payan 1971, Tarjan 1975, Katona 1974, (Alon / Frankl). Given $(\mathcal{A}, \mathcal{B})$, a cross intersecting SPS. $X:=\cup \mathcal{A} \cup \mathcal{B}$.

Figure: A type i permutation of X.
Call a permutation type i if $A_{i}<_{\pi} B_{i}$.
Note that type $i \neq$ type j.

Conj'd by Berge/ Ehrenfeucht, Mycielsky 1973. Proof by Jaeger, Payan 1971, Tarjan 1975, Katona 1974, (Alon / Frankl). Given $(\mathcal{A}, \mathcal{B})$, a cross intersecting SPS. $X:=\cup \mathcal{A} \cup \mathcal{B}$.

Figure: A type i permutation of X.
Call a permutation type i if $A_{i}<_{\pi} B_{i}$.
Note that type $i \neq$ type j.
$\operatorname{Prob}(\pi$ is of type $i)=1 /\binom{\left|A_{i}\right|+B_{i} \mid}{\left|A_{i}\right|}$.
Therefore

$$
\sum_{i} \frac{1}{\binom{\left|A_{i}\right|+B_{i} \mid}{\left|A_{i}\right|}} \leq 1
$$

1. To show that cross intersecting SPS is an important tool, by giving proofs, examples, generalizations, applications.
2. To show that cross intersecting SPS is an important tool, by giving proofs, examples, generalizations, applications.
3.

To investigate 1-cross intersecting SPS. $\quad\left(\left|A_{i} \cap B_{j}\right|=1\right)$ New results are joint with Gyárfás and Király, and related to one of my favorite structures, finite affine and projective planes

Figure: The Fano plane.

The kernel of intersecting families
DEF: Suppose \mathcal{H} is intersecting. S is a kernel of \mathcal{H} if

$$
S \cap e \cap f \neq \emptyset \quad \forall e, f \in \mathcal{H}
$$

E.g., the kernel of $\left\{\binom{S}{r}\right\}$ (for $|S|<2 r$) is itself, the kernel of $K_{1, m}$ (star) is a singleton.

The kernel of intersecting families

DEF: Suppose \mathcal{H} is intersecting. S is a kernel of \mathcal{H} if

$$
S \cap e \cap f \neq \emptyset \quad \forall e, f \in \mathcal{H}
$$

E.g., the kernel of $\left\{\binom{S}{r}\right\}$ (for $|S|<2 r$) is itself, the kernel of $K_{1, m}$ (star) is a singleton.

Theorem (Całczyńska-Karłowicz 1964)

$\forall r \exists C K(r)<\infty$ such that:
If \mathcal{H} is intersecting, $|e| \leq r \forall e \in \mathcal{H}$, then $\exists S,|S| \leq C K(r)$.
$C K(1)=1, C K(2)=3, C K(3) \geq 7$,
$C K(q+1) \geq q^{2}+q+1$ if \exists projective plant

The kernel of intersecting families, proof
A proof by Katona's permutation method by Erdős, Lovász 1973.

The kernel of intersecting families, proof
A proof by Katona's permutation method by Erdős, Lovász 1973.
Given \mathcal{H}, intersecting, $|e| \leq r \forall e \in \mathcal{H}$, let $X:=\cup \mathcal{H}$.
Remove element x if $\mathcal{H} \mid(X \backslash\{x\})$ is still intersecting.
Repeat until we get a critical S :

$$
\forall x \in S \exists A(x), B(x) \in \mathcal{H}_{\text {new }} \quad A(x) \cap B(x)=\{x\} .
$$

The kernel of intersecting families, proof

A proof by Katona's permutation method by Erdős, Lovász 1973.
Given \mathcal{H}, intersecting, $|e| \leq r \forall e \in \mathcal{H}$, let $X:=\cup \mathcal{H}$.
Remove element x if $\mathcal{H} \mid(X \backslash\{x\})$ is still intersecting.
Repeat until we get a critical S :

$$
\forall x \in S \exists A(x), B(x) \in \mathcal{H}_{\text {new }} \quad A(x) \cap B(x)=\{x\} .
$$

Figure: A type x permutation of X.
Call a permutation type x if $A(x) \leq_{\pi} B(x)$. Type $x \neq$ Type y. $\operatorname{Prob}(\pi$ is of type $x)=\ldots, \quad \sum_{x \in S} \mathbb{P r o b} \leq 1, \quad C K(r) \leq \frac{r}{2}\binom{2 r-1}{r}$.

The kernel of intersecting families, proof

A proof by Katona's permutation method by Erdős, Lovász 1973.
Given \mathcal{H}, intersecting, $|e| \leq r \forall e \in \mathcal{H}$, let $X:=\cup \mathcal{H}$.
Remove element x if $\mathcal{H} \mid(X \backslash\{x\})$ is still intersecting.
Repeat until we get a critical S :

$$
\forall x \in S \quad \exists A(x), B(x) \in \mathcal{H}_{\text {new }} \quad A(x) \cap B(x)=\{x\} .
$$

Figure: A type x permutation of X.
Call a permutation type x if $A(x) \leq_{\pi} B(x)$. Type $x \neq$ Type y. $\operatorname{Prob}(\pi$ is of type $x)=\ldots, \quad \sum_{x \in S} \mathbb{P r o b} \leq 1, \quad C K(r) \leq \frac{r}{2}\binom{2 r-1}{r}$.
New results, see: Kang, Ni, Shan 2017, Polcyn, Ruciński 2017, Henning, Yeo 2014, Tuza 1994/1996 (surveys)

A construction by Erdős, Lovász 1973.

Take $|V|=2 r-2,|Z|=\frac{1}{2}\binom{2 r-2}{r-1}, V \cap Z=\emptyset$. \forall partition Π of $V,|A|=|B|=r-1$ assign $z:=z(\Pi) \in Z$.

The kernel could be exponential
A construction by Erdős, Lovász 1973.

Take $|V|=2 r-2,|Z|=\frac{1}{2}\binom{2 r-2}{r-1}, V \cap Z=\emptyset$. \forall partition Π of $V,|A|=|B|=r-1$ assign $z:=z(\Pi) \in Z$. Let $\{A(z), B(z)\}:=\{A \cup\{z\}, B \cup\{z\}\}$.
Then \mathcal{H} is intersecting, critical, $V(\mathcal{H})$ can not be shrunk

$$
C K(r) \geq(2 r-2)+\frac{1}{2}\binom{2 r-2}{r-1}
$$

New results, generalizations, see: Alon, Füredi 1987, Talbot 2004, Tuza 1994/1996 (surveys), ...

Sperner families, LYM inequality

DEF: $\mathcal{H} \subset 2^{[n]}$ is a Sperner family if $A \not \subset B \forall A, B \in \mathcal{H}$.
Theorem (Sperner)
$|\mathcal{H}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

Sperner families, LYM inequality

DEF: $\mathcal{H} \subset 2^{[n]}$ is a Sperner family if $A \not \subset B \forall A, B \in \mathcal{H}$.
Theorem (Sperner)
$|\mathcal{H}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

Theorem (LYM: Lubell, Yamamoto, Meshalkin)
$\sum_{A \in \mathcal{H}} \frac{1}{\binom{n}{|A|}} \leq 1$.
Proof: $(A, X \backslash A)$ is an cross intersetcing SPS.
Equality iff $|A|=r \quad \forall A \in \mathcal{H}$.

Cross intersecting k-tuples

DEF: $\left(A_{i}, B_{i}, \ldots, Z_{i}\right)_{1 \leq i \leq m}$ form a family of cross intersecting k-tuples if these k sets are pairwise disjoint and $\forall i \neq j \quad \exists X \neq Y \in\{A, B, \ldots, Z\}$ such that $X_{i} \cap Y_{j} \neq \emptyset$.

Theorem (Tuza)
If $p_{1}+\cdots+p_{k}=1, \forall p_{j}>0$, then

$$
\sum_{i} p_{1}^{\left|A_{i}\right|} \cdots p_{k}^{\left|Z_{i}\right|} \leq 1
$$

Cross intersecting k-tuples

DEF: $\left(A_{i}, B_{i}, \ldots, Z_{i}\right)_{1 \leq i \leq m}$ form a family of cross intersecting k-tuples if these k sets are pairwise disjoint and $\forall i \neq j \quad \exists X \neq Y \in\{A, B, \ldots, Z\}$ such that $X_{i} \cap Y_{j} \neq \emptyset$.

Theorem (Tuza)

If $p_{1}+\cdots+p_{k}=1, \forall p_{j}>0$, then

$$
\sum_{i} p_{1}^{\left|A_{i}\right|} \cdots p_{k}^{\left|Z_{i}\right|} \leq 1
$$

Corollary (Take $p_{1}=p_{2}=1 / 2$.)

$\left\{A_{i}, B_{i}\right\}_{1 \leq i \leq m}$ cross intersecting SPS then $m \leq 2^{\max \left\{\left|A_{i}\right|+\left|B_{i}\right|\right\}}$.

Cross intersecting k-tuples

DEF: $\left(A_{i}, B_{i}, \ldots, Z_{i}\right)_{1 \leq i \leq m}$ form a family of cross intersecting k-tuples if these k sets are pairwise disjoint and $\forall i \neq j \quad \exists X \neq Y \in\{A, B, \ldots, Z\}$ such that $X_{i} \cap Y_{j} \neq \emptyset$.

Theorem (Tuza)

If $p_{1}+\cdots+p_{k}=1, \forall p_{j}>0$, then

$$
\sum_{i} p_{1}^{\left|A_{i}\right|} \cdots p_{k}^{\left|Z_{i}\right|} \leq 1
$$

Corollary (Take $p_{1}=p_{2}=1 / 2$.)

$\left\{A_{i}, B_{i}\right\}_{1 \leq i \leq m}$ cross intersecting SPS then $m \leq 2^{\max \left\{\left|A_{i}\right|+\left|B_{i}\right|\right\}}$.
Even more, it is enough to suppose that for all $i \neq j$

$$
\max \left\{\left|A_{i} \cap B_{j}\right|,\left|A_{j} \cap B_{i}\right|\right\}>0
$$

Other results on k-tuples: Alon 1985.

A geometric application, tangent simplices

DEF: $S, S^{\prime} \subset \mathbb{R}^{d}$ are tangent simplices if int $S \cap \operatorname{int} S^{\prime}=\emptyset$ and $\operatorname{dim}\left(S \cap S^{\prime}\right)=d-1$.

Theorem (Perles)

Suppose $S_{1}, \ldots, S_{m} \subset \mathbb{R}^{d}$ pairwise tangent.
Then $m \leq 2^{d+1}$.

Four tangent triangles
J. Zaks: $h(2)=4, h(3)=8, h(d) \geq 2^{d}$.

Tangent simplices, a proof using SPS

Perles' proof.
Suppose $S_{1}, \ldots, S_{m} \subset \mathbb{R}^{d}$ pairwise tangent.
Let H_{1}, \ldots, H_{v} all hyperplanes, tangent to some faces
$(v \leq m(d+1))$.

Take a general point O and given S_{i}
$A_{i}:=$ tangent hyperplanes H_{α} such that $O \in H_{\alpha}^{+}$and $S_{i} \subset H_{\alpha}^{+}$.
Then $\left\{\left|A_{i} \cap B_{j}\right|,\left|A_{j} \cap B_{i}\right|\right\}=\{0,1\}$.

Pairs of disjoint subspaces

DEF: $A, B \subset \mathbb{R}^{d}$ are disjoint linear subspaces if $A \cap B=\{\mathbf{0}\}$, i.e., $\operatorname{dim}(A+B)=\operatorname{dim}(A)+\operatorname{dim}(B)$.
Non-disjoint: $\operatorname{dim}(A \cap B) \geq 1$.

Theorem (Lovász)

Suppose that $\left(A_{i}, B_{i}\right)_{1 \leq i \leq m}$ is a cross intersecting family of disjoint pairs of subspaces of dimensions a and b, i.e.,

$$
\begin{aligned}
\operatorname{dim}\left(A_{i}\right) & \leq a, \operatorname{dim}\left(B_{i}\right) \leq b \text { and } \\
\operatorname{dim}\left(A_{i} \cap B_{i}\right) & =0 \text { and } \operatorname{dim}\left(A_{i} \cap B_{j}\right) \geq 1 .
\end{aligned}
$$

Then $m \leq\binom{ a+b}{a}$.

Pairs of disjoint subspaces

DEF: $A, B \subset \mathbb{R}^{d}$ are disjoint linear subspaces if $A \cap B=\{\mathbf{0}\}$, i.e., $\operatorname{dim}(A+B)=\operatorname{dim}(A)+\operatorname{dim}(B)$.
Non-disjoint: $\operatorname{dim}(A \cap B) \geq 1$.

Theorem (Lovász)

Suppose that $\left(A_{i}, B_{i}\right)_{1 \leq i \leq m}$ is a cross intersecting family of disjoint pairs of subspaces of dimensions a and b, i.e.,

$$
\begin{gathered}
\operatorname{dim}\left(A_{i}\right) \leq a, \operatorname{dim}\left(B_{i}\right) \leq b \text { and } \\
\operatorname{dim}\left(A_{i} \cap B_{i}\right)=0 \text { and } \operatorname{dim}\left(A_{i} \cap B_{j}\right) \geq 1 .
\end{gathered}
$$

Then $m \leq\binom{ a+b}{a}$.

Implies Bollobás.
Given a cross intersecting $\operatorname{SPS}(\mathcal{A}, \mathcal{B})$: take $d=|\cup \mathcal{A} \cup \mathcal{B}|$ pairwise orthogonal vectors $\left\{\mathbf{e}_{t}: t \in[d]\right\}$ and let $\widehat{A}_{i}:=\operatorname{Span}\left(\left\{\mathbf{e}_{t}: t \in A_{i}\right\}\right)$.

A consequence of Lovász geometric method

> Theorem (ZF cross t-intersecting families)
> $\left(A_{1},, B_{1}\right), \ldots,\left(A_{m}, B_{m}\right)$ set pairs with $\left|A_{i}\right| \leq a,\left|B_{i}\right| \leq b$ and $A_{i} \cap B_{i} \leq t$, and $A_{i} \cap B_{j}>t$ for all $i \neq j$.
> Then $m \leq\binom{ a+b-2 t}{a-t}$.

Best possible:

$$
\begin{aligned}
& V=X \cup T,|X|=a+b-2 t,|T|=t \text { and } \\
& \mathcal{A}:=\left\{A \in\binom{V}{a}, T \subset A\right\}, \mathcal{B}:=\left\{B \in\binom{V}{b}, T \subset B\right\},
\end{aligned}
$$

Another consequence, skew cross intersecting SPS's

Theorem (Frank// Kalai)
$\left(A_{1},, B_{1}\right), \ldots,\left(A_{m}, B_{m}\right)$ set pairs with $\left|A_{i}\right| \leq a,\left|B_{i}\right| \leq b$ and

$$
A_{i} \cap B_{i}=\emptyset \text {, and } A_{i} \cap B_{j} \neq \emptyset \text { for all } i<j \text {. }
$$

Then $m \leq\binom{ a+b}{a}$.
Best possible, but many more extremal families.

Another consequence, skew cross intersecting SPS's

Theorem (Frankl/ Kalai)
$\left(A_{1},, B_{1}\right), \ldots,\left(A_{m}, B_{m}\right)$ set pairs with $\left|A_{i}\right| \leq a,\left|B_{i}\right| \leq b$ and

$$
A_{i} \cap B_{i}=\emptyset \text {, and } A_{i} \cap B_{j} \neq \emptyset \text { for all } i<j \text {. }
$$

Then $m \leq\binom{ a+b}{a}$.
Best possible, but many more extremal families.
True for cross t-intersecting, also for the subspace version. But no optimal LYM type inequality is known.

Another consequence, skew cross intersecting SPS's

Theorem (Frankl/ Kalai)
$\left(A_{1},, B_{1}\right), \ldots,\left(A_{m}, B_{m}\right)$ set pairs with $\left|A_{i}\right| \leq a,\left|B_{i}\right| \leq b$ and $A_{i} \cap B_{i}=\emptyset$, and $A_{i} \cap B_{j} \neq \emptyset$ for all $i<j$.
Then $m \leq\binom{ a+b}{a}$.
Best possible, but many more extremal families.
True for cross t-intersecting, also for the subspace version. But no optimal LYM type inequality is known.

Alon and Kalai: used skew cross intersecting SPS's to prove the Upper Bound Theorem of McMullen:
An exact formula for the max number of t dim faces of an n-vertex convex polytope with n vertices.

τ-critical graphs

DEF: (Gallai) The graph G is τ-critical if

$$
\tau(G \backslash e)<\tau(G) \quad \forall e \in E(G)
$$

E.g., $C_{2 \tau-1}, K_{\tau+1}$.

τ-critical graphs

DEF: (Gallai) The graph G is τ-critical if

$$
\tau(G \backslash e)<\tau(G) \quad \forall e \in E(G)
$$

E.g., $C_{2 \tau-1}, K_{\tau+1}$.

Theorem (Erdős, Gallai)

G is τ-critical, then $|V(G)| \leq 2 \tau$.

Theorem (Erdős, Hajnal, Moon)

G is τ-critical, then $e(G) \leq\binom{\tau+1}{2}$.
Best possible. (Originally they stated it about \bar{G}).

τ-critical graphs

DEF: (Gallai) The graph G is τ-critical if

$$
\tau(G \backslash e)<\tau(G) \quad \forall e \in E(G)
$$

E.g., $C_{2 \tau-1}, K_{\tau+1}$.

Theorem (Erdős, Gallai)

G is τ-critical, then $|V(G)| \leq 2 \tau$.

Theorem (Erdős, Hajnal, Moon)

G is τ-critical, then $e(G) \leq\binom{\tau+1}{2}$.
Best possible. (Originally they stated it about \bar{G}).
Proof of the EHM thm:
Consider $A(e):=e$ for edge $e \in E(G)$, and
$B(e):=$ a covering set of the edges of $E(G) \backslash\{e\}$.
They form a cross intersecting SPS of set sizes 2 and $\tau-1$.

τ-critical hypergraphs

$$
\tau(\mathcal{H} \backslash e)<\tau(\mathcal{H}) \quad \forall e \in E(\mathcal{H})
$$

E.g., Erdős-Lovász construction for $C K(r), K_{r}^{\tau+r-1}$.

τ-critical hypergraphs

$$
\tau(\mathcal{H} \backslash e)<\tau(\mathcal{H}) \quad \forall e \in E(\mathcal{H})
$$

E.g., Erdős-Lovász construction for $C K(r), K_{r}^{\tau+r-1}$.

Theorem (Bollobás 1965)

\mathcal{H} is τ-critical, r-uniform, then $|E(\mathcal{H})| \leq\binom{\tau+r-1}{r}$.

τ-critical hypergraphs

$$
\tau(\mathcal{H} \backslash e)<\tau(\mathcal{H}) \quad \forall e \in E(\mathcal{H})
$$

E.g., Erdős-Lovász construction for $C K(r), K_{r}^{\tau+r-1}$.

Theorem (Bollobás 1965)

\mathcal{H} is τ-critical, r-uniform, then $|E(\mathcal{H})| \leq\binom{\tau+r-1}{r}$.
What about $f(\tau, r):=\max |V(\mathcal{H})|, \mathcal{H}$ is τ-critical, r-uniform.

τ-critical hypergraphs

$$
\tau(\mathcal{H} \backslash e)<\tau(\mathcal{H}) \quad \forall e \in E(\mathcal{H})
$$

E.g., Erdős-Lovász construction for $C K(r), K_{r}^{\tau+r-1}$.

Theorem (Bollobás 1965)

\mathcal{H} is τ-critical, r-uniform, then $|E(\mathcal{H})| \leq\binom{\tau+r-1}{r}$.
What about $f(\tau, r):=\max |V(\mathcal{H})|, \mathcal{H}$ is τ-critical, r-uniform.

> Theorem (Petruska, Szemerédi $r=3$, Gyárfás, Lehel, Tuza 1982, finally Tuza)

\mathcal{H} is τ-critical, then $|V(\mathcal{H})| \leq\binom{\tau+r-1}{r-1}+\binom{\tau+r-2}{r-2}$.
Best upper bound is still unknown.

DEF: A 1-cross intersecting set pair system (SPS) of size m : $\left(\left\{A_{i}\right\}_{i=1}^{m},\left\{B_{i}\right\}_{i=1}^{m}\right)$ with $A_{i} \cap B_{i}=\emptyset$ and $\left|A_{i} \cap B_{j}\right|=1 \quad \forall i \neq j$.

DEF: A 1-cross intersecting set pair system (SPS) of size m : $\left(\left\{A_{i}\right\}_{i=1}^{m},\left\{B_{i}\right\}_{i=1}^{m}\right)$ with $A_{i} \cap B_{i}=\emptyset$ and $\left|A_{i} \cap B_{j}\right|=1 \quad \forall i \neq j$.
An SPS is (a, b)-bounded if $\left|A_{i}\right| \leq a$ and $\left|B_{i}\right| \leq b$ for each i.

DEF: A 1-cross intersecting set pair system (SPS) of size m :

$$
\left(\left\{A_{i}\right\}_{i=1}^{m},\left\{B_{i}\right\}_{i=1}^{m}\right) \text { with } A_{i} \cap B_{i}=\emptyset \text { and }\left|A_{i} \cap B_{j}\right|=1 \quad \forall i \neq j .
$$

An SPS is (a, b)-bounded if $\left|A_{i}\right| \leq a$ and $\left|B_{i}\right| \leq b$ for each i.

A C_{5} and $\overline{C_{5}}$ form a (2,2)-bounded 1-cross int' SPS. It is optimal: $\quad m_{2}(*, *, 1)=5$
The edges of a $C_{2 n+1}$ and independent covers: a ($2, n$)-bounded 1 -cross intersecting SPS.

The product construction

Proposition

If $\left(a_{1}, b_{1}\right)$-bounded and $\left(a_{2}, b_{2}\right)$-bounded 1-cross intersecting SPS exist with sizes m_{1} and m_{2}, then $\left(a_{1}+a_{2}, b_{1}+b_{2}\right)$-bounded 1 -cross intersecting SPS also exists of size $m_{1} \cdot m_{2}$.

The product construction

Proposition

If $\left(a_{1}, b_{1}\right)$-bounded and $\left(a_{2}, b_{2}\right)$-bounded 1-cross intersecting SPS exist with sizes m_{1} and m_{2}, then $\left(a_{1}+a_{2}, b_{1}+b_{2}\right)$-bounded 1 -cross intersecting SPS also exists of size $m_{1} \cdot m_{2}$.

Proof Given $\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)$ and $\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)$ on vertex sets V_{α}.
Take m_{1} pairwise disjoint ground sets $V_{2}^{1}, \ldots, V_{2}^{m_{1}}$ with copies $\left(\mathcal{A}_{2}^{i}, \mathcal{B}_{2}^{i}\right)$, e.g., $\mathcal{A}_{2}^{i}=\left\{A_{i, 1}, \ldots, A_{i, m_{2}}\right\} \ldots$

The product construction

Proposition

If $\left(a_{1}, b_{1}\right)$-bounded and $\left(a_{2}, b_{2}\right)$-bounded 1-cross intersecting SPS exist with sizes m_{1} and m_{2}, then $\left(a_{1}+a_{2}, b_{1}+b_{2}\right)$-bounded 1 -cross intersecting SPS also exists of size $m_{1} \cdot m_{2}$.

Proof Given $\left(\mathcal{A}_{1}, \mathcal{B}_{1}\right)$ and $\left(\mathcal{A}_{2}, \mathcal{B}_{2}\right)$ on vertex sets V_{α}.
Take m_{1} pairwise disjoint ground sets $V_{2}^{1}, \ldots, V_{2}^{m_{1}}$ with copies $\left(\mathcal{A}_{2}^{i}, \mathcal{B}_{2}^{i}\right)$, e.g., $\mathcal{A}_{2}^{i}=\left\{A_{i, 1}, \ldots, A_{i, m_{2}}\right\} \ldots$
The pairs $A_{i, j}^{\prime}=A_{i} \cup A_{i, j}, B_{i, j}^{\prime}=B_{i} \cup B_{i, j}$ form a 1-cross intersecting SPS, $\left|A_{i, j}^{\prime}\right| \leq a_{1}+a_{2}$ and $\left|B_{i, j}^{\prime}\right| \leq b_{1}+b_{2}$.

1-cross intersecting SPS can be exponential

Corollary

There exists an (n, n)-bounded 1-cross intersecting SPS of size $5^{n / 2}$ if n is even and of size $2 \cdot 5^{(n-1) / 2}$ if n is odd.

1-cross intersecting SPS can be exponential

Corollary

There exists an (n, n)-bounded 1-cross intersecting SPS of size $5^{n / 2}$ if n is even and of size $2 \cdot 5^{(n-1) / 2}$ if n is odd.

The product construction gives a (3, 3)-bounded 1-cross intersecting SPS of size 10.
We have another example, the pairs
$(\{i, i+1, i+2\},\{i+3, i+6, i+9\})$ taken (mod 10) has 10 vertices.

1-cross intersecting SPS can be exponential

Corollary

There exists an (n, n)-bounded 1 -cross intersecting SPS of size $5^{n / 2}$ if n is even and of size $2 \cdot 5^{(n-1) / 2}$ if n is odd.

The product construction gives a $(3,3)$-bounded 1 -cross intersecting SPS of size 10.
We have another example, the pairs
$(\{i, i+1, i+2\},\{i+3, i+6, i+9\})$ taken $(\bmod 10)$ has 10 vertices.
Samuel Spiro (sspiro@ucsd.edu) informed us that his computer program successfully checked that 10 is indeed the largest size, $m_{1}(*, *, 1)=2$,
$m_{2}(*, *, 1)=5$,
$m_{3}(*, *, 1)=10$,
$m_{4}(*, *, 1) \geq 25$.

Limit exists

Fekete's Lemma on subadditive sequences implies

$$
\sqrt{5} \leq \lim _{n \rightarrow \infty}\left(m_{n}(*, *, 1)\right)^{1 / n}=\exists \leq 4 .
$$

Limit exists

Fekete's Lemma on subadditive sequences implies

$$
\sqrt{5} \leq \lim _{n \rightarrow \infty}\left(m_{n}(*, *, 1)\right)^{1 / n}=\exists \leq 4 .
$$

A challenging problem is to decrease essentially Bollobás' upper bound:

Conjecture

There exists a positive ε such that $m_{n}(*, *, 1) \leq(1-\varepsilon)\binom{2 n}{n}$ for every $n \geq 2$.

A Fischer's inequality for cross 1-intersecring SPS

> Proposition ($m \leq|\cup \mathcal{A}|$)
> Let $(\mathcal{A}, \mathcal{B})$ be 1 -cross intersecting, $V:=\cup \mathcal{A}$. The char. vectors of the edges of \mathcal{A} are linearly independent in \mathbb{R}^{V}.

A Fischer's inequality for cross 1-intersecring SPS

Proposition ($m \leq|\cup \mathcal{A}|$)

Let $(\mathcal{A}, \mathcal{B})$ be 1 -cross intersecting, $V:=\cup \mathcal{A}$. The char. vectors of the edges of \mathcal{A} are linearly independent in \mathbb{R}^{V}.

Let $\mathbf{a}_{i}\left(\right.$ resp. $\left.\mathbf{b}_{i}\right)$ denote the characteristic vector of $A_{i}\left(\right.$ resp. $\left.B_{i}\right)$, $\mathbf{a}_{i}(v)=1$ for $v \in V$ if and only if $v \in A_{i}$. Otherwise $\mathbf{a}_{i}(v)=0$.

A Fischer's inequality for cross 1-intersecring SPS

Proposition ($m \leq|\cup \mathcal{A}|$)

Let $(\mathcal{A}, \mathcal{B})$ be 1 -cross intersecting, $V:=\cup \mathcal{A}$. The char. vectors of the edges of \mathcal{A} are linearly independent in \mathbb{R}^{V}.

Let $\mathbf{a}_{i}\left(\right.$ resp. $\left.\mathbf{b}_{i}\right)$ denote the characteristic vector of $A_{i}\left(\right.$ resp. $\left.B_{i}\right)$, $\mathbf{a}_{i}(v)=1$ for $v \in V$ if and only if $v \in A_{i}$. Otherwise $\mathbf{a}_{i}(v)=0$. Suppose

$$
\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}=\mathbf{0}
$$

A Fischer's inequality for cross 1-intersecring SPS

Proposition ($m \leq|\cup \mathcal{A}|$)

Let $(\mathcal{A}, \mathcal{B})$ be 1 -cross intersecting, $V:=\cup \mathcal{A}$. The char. vectors of the edges of \mathcal{A} are linearly independent in \mathbb{R}^{V}.

Let $\mathbf{a}_{i}\left(\right.$ resp. $\left.\mathbf{b}_{i}\right)$ denote the characteristic vector of $A_{i}\left(\right.$ resp. $\left.B_{i}\right)$, $\mathbf{a}_{i}(v)=1$ for $v \in V$ if and only if $v \in A_{i}$. Otherwise $\mathbf{a}_{i}(v)=0$. Suppose

$$
\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}=\mathbf{0}
$$

Take the dot product with \mathbf{b}_{j}. Since $\left|A_{i} \cap B_{j}\right|=1$ for $i \neq j$ and $\left|A_{j} \cap B_{j}\right|=0$, we get

$$
\left(\sum_{i=1}^{m} \lambda_{i}\right)-\lambda_{j}=0
$$

A Fischer's inequality for cross 1-intersecring SPS

Proposition ($m \leq|\cup \mathcal{A}|$)

Let $(\mathcal{A}, \mathcal{B})$ be 1 -cross intersecting, $V:=\cup \mathcal{A}$. The char. vectors of the edges of \mathcal{A} are linearly independent in \mathbb{R}^{V}.

Let $\mathbf{a}_{i}\left(\right.$ resp. $\left.\mathbf{b}_{i}\right)$ denote the characteristic vector of $A_{i}\left(\right.$ resp. $\left.B_{i}\right)$, $\mathbf{a}_{i}(v)=1$ for $v \in V$ if and only if $v \in A_{i}$. Otherwise $\mathbf{a}_{i}(v)=0$. Suppose

$$
\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}=\mathbf{0}
$$

Take the dot product with \mathbf{b}_{j}. Since $\left|A_{i} \cap B_{j}\right|=1$ for $i \neq j$ and $\left|A_{j} \cap B_{j}\right|=0$, we get

$$
\left(\sum_{i=1}^{m} \lambda_{i}\right)-\lambda_{j}=0
$$

Add up for all $j:(m-1) \sum_{i=1}^{m} \lambda_{i}=0$, consequently $\sum_{i=1}^{m} \lambda_{i}=0$ and thus $\lambda_{j}=0$ for all j.

Lovász’ characterization of perfect graphs

A special case of the previous Proposition can be used in the non-trivial part of Gasparyan's 1996 proof of Lovász's theorem:

A graph G is perfect if and only if

$$
\begin{equation*}
|V(H)| \leq \alpha(H) \omega(H) \tag{1}
\end{equation*}
$$

holds for all induced subgraphs H of G.

Lovász’ characterization of perfect graphs

A special case of the previous Proposition can be used in the non-trivial part of Gasparyan's 1996 proof of Lovász's theorem:

A graph G is perfect if and only if

$$
\begin{equation*}
|V(H)| \leq \alpha(H) \omega(H) \tag{1}
\end{equation*}
$$

holds for all induced subgraphs H of G.
Proof. In a minimal imperfect graph G there is a 1 -cross intersecting SPS of size $m=\alpha(G) \omega(G)+1$ defined by independent sets and complete subgraphs. By the previous Proposition, $|V(G)| \geq \alpha(G) \omega(G)+1$, contradicting (1).

Lovász’ characterization of perfect graphs

A special case of the previous Proposition can be used in the non-trivial part of Gasparyan's 1996 proof of Lovász's theorem:

A graph G is perfect if and only if

$$
\begin{equation*}
|V(H)| \leq \alpha(H) \omega(H) \tag{1}
\end{equation*}
$$

holds for all induced subgraphs H of G.
Proof. In a minimal imperfect graph G there is a 1 -cross intersecting SPS of size $m=\alpha(G) \omega(G)+1$ defined by independent sets and complete subgraphs. By the previous Proposition, $|V(G)| \geq \alpha(G) \omega(G)+1$, contradicting (1).

Corollary (Lovász)

A graph is perfect if and only if its complement is perfect.

$(2, n)$-bounded 1 -cross intersecting SPS

Theorem (The case of \mathcal{A} is a graph.)

Let $n \geq 4$, and let $(\mathcal{A}, \mathcal{B})$ be a $(2, n)$-bounded 1-cross intersecting SPS of size m. Then

$$
m \leq\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)\left(\left\lceil\frac{n}{2}\right\rceil+1\right)
$$

Best possible. For $n=2,3$ the exact values are $m=5,7$.

An extremal family: $\left\lfloor\frac{n}{2}\right\rfloor+1$ copies of stars with $\left\lceil\frac{n}{2}\right\rceil+1$ edges.

Linear hypergraphs and cross 1 -intersecting SPS

A hypergraph \mathcal{H} is called linear if the intersection of any two different edges has at most one vertex. E.g., affine planes $A G(2, q)$. Usually $V(A G(2, q))=\mathbb{F}_{q}^{2}$, q^{2} vertices and the hyperedges $=q^{2}+q$ lines.

Linear hypergraphs and cross 1 -intersecting SPS

A hypergraph \mathcal{H} is called linear if the intersection of any two different edges has at most one vertex.
E.g., affine planes $A G(2, q)$. Usually $V(A G(2, q))=\mathbb{F}_{q}^{2}$, q^{2} vertices and the hyperedges $=q^{2}+q$ lines.
\mathcal{H} is called 1-intersecting if $\left|H \cap H^{\prime}\right|=1$ for all $H, H^{\prime} \in \mathcal{H}$ whenever $H \neq H^{\prime}$.
E.g., finite projective planes $P G(2, q)$.

Linear hypergraphs and cross 1-intersecting SPS

A hypergraph \mathcal{H} is called linear if the intersection of any two different edges has at most one vertex.
E.g., affine planes $A G(2, q)$. Usually $V(A G(2, q))=\mathbb{F}_{q}^{2}$,
q^{2} vertices and the hyperedges $=q^{2}+q$ lines.
\mathcal{H} is called 1-intersecting if $\left|H \cap H^{\prime}\right|=1$ for all $H, H^{\prime} \in \mathcal{H}$ whenever $H \neq H^{\prime}$.
E.g., finite projective planes $P G(2, q)$.

If one of $(\mathcal{A}, \mathcal{B})$, say \mathcal{A}, in an SPS is linear, then (without any assumption on $\left.\left|B_{i} \cap B_{j}\right|,\left|A_{i} \cap B_{j}\right|\right)$.

Proposition (26)

The size of an (n, n)-bounded cross intersecting $\operatorname{SPS}(\mathcal{A}, \mathcal{B})$ with linear \mathcal{A} is at most $n^{2}+n+1$.

The vertex set of a double star of size s consist of $\left\{v_{i, j} \mid 1 \leq i, j \leq s, i \neq j\right\}$ and two additional vertices w_{a} and w_{b}. Define for $i \in[s] A_{i}:=\left\{w_{a}\right\} \cup\left\{v_{i, j} \mid 1 \leq j \leq s, j \neq i\right\}$ and

$$
B_{i}:=\left\{w_{b}\right\} \cup\left\{v_{j, i} \mid 1 \leq j \leq s, j \neq i\right\} .
$$

$(\mathcal{A}, \mathcal{B})$ is a 1 -cross intersecting SPS of size s containing s-element sets such that both \mathcal{A} and \mathcal{B} are 1 -intersecting.

Notation and general setting

Let $a, b>0$ and $I_{A}, I_{B}, I_{\text {cross }}$ three sets of non-negative integers. Let $m\left(a, b, I_{A}, I_{B}, I_{\text {cross }}\right)$ the maximum size m of a cross intersecting $\operatorname{SPS}(\mathcal{A}, \mathcal{B})$ with the following conditions.
i) $A_{i} \cap B_{i}=\emptyset$ for every $1 \leq i \leq m$,
ii-iii) $\left|A_{i}\right| \leq a,\left|B_{i}\right| \leq b$ for every $1 \leq i \leq m$, iv-v) $\left|A_{i} \cap A_{j}\right| \in I_{A},\left|B_{i} \cap B_{j}\right| \in I_{B}$ for every $1 \leq i \neq j \leq m$,
vi) $0<\left|A_{i} \cap B_{j}\right| \in I_{\text {cross }}$ for every $1 \leq i \neq j \leq m$.

Notation and general setting

Let $a, b>0$ and $I_{A}, I_{B}, I_{\text {cross }}$ three sets of non-negative integers. Let $m\left(a, b, I_{A}, I_{B}, I_{\text {cross }}\right)$ the maximum size m of a cross intersecting $\operatorname{SPS}(\mathcal{A}, \mathcal{B})$ with the following conditions.
i) $A_{i} \cap B_{i}=\emptyset$ for every $1 \leq i \leq m$,
ii-iii) $\left|A_{i}\right| \leq a,\left|B_{i}\right| \leq b$ for every $1 \leq i \leq m$,
iv-v) $\left|A_{i} \cap A_{j}\right| \in I_{A},\left|B_{i} \cap B_{j}\right| \in I_{B}$ for every $1 \leq i \neq j \leq m$,
vi) $0<\left|A_{i} \cap B_{j}\right| \in I_{\text {cross }}$ for every $1 \leq i \neq j \leq m$.

We suppose that $0 \notin I_{\text {cross }}$, and $m \geq 2$.
If a constraint in iv)-vi) is vacuous (i.e., $\{0,1, \ldots,|X|\} \subseteq I_{X}$ or $\left.\{1, \ldots, \min \{a, b\}\} \subseteq I_{\text {cross }}\right)$ then we use the symbol $*$

Notation and general setting

Let $a, b>0$ and $I_{A}, I_{B}, I_{\text {cross }}$ three sets of non-negative integers. Let $m\left(a, b, I_{A}, I_{B}, I_{\text {cross }}\right)$ the maximum size m of a cross intersecting $\operatorname{SPS}(\mathcal{A}, \mathcal{B})$ with the following conditions.
i) $A_{i} \cap B_{i}=\emptyset$ for every $1 \leq i \leq m$,
ii-iii) $\left|A_{i}\right| \leq a,\left|B_{i}\right| \leq b$ for every $1 \leq i \leq m$,
iv-v) $\left|A_{i} \cap A_{j}\right| \in I_{A},\left|B_{i} \cap B_{j}\right| \in I_{B}$ for every $1 \leq i \neq j \leq m$,
vi) $0<\left|A_{i} \cap B_{j}\right| \in I_{\text {cross }}$ for every $1 \leq i \neq j \leq m$.

We suppose that $0 \notin I_{\text {cross }}$, and $m \geq 2$.
If a constraint in iv)-vi) is vacuous (i.e., $\{0,1, \ldots,|X|\} \subseteq I_{X}$ or $\left.\{1, \ldots, \min \{a, b\}\} \subseteq I_{\text {cross }}\right)$ then we use the symbol $*$
Bollobás' theorem:

$$
m(a, b, *, *, *)=\binom{a+b}{a}
$$

More notations

Our Theorem on p. 25 states (for $n \geq 4$)

$$
m(2, n, *, *, 1)=\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)\left(\left\lceil\frac{n}{2}\right\rceil+1\right) .
$$

More notations

Our Theorem on p. 25 states (for $n \geq 4$)

$$
m(2, n, *, *, 1)=\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)\left(\left\lceil\frac{n}{2}\right\rceil+1\right) .
$$

For the case $a=b=n$ and use the abbreviation

$$
m_{n}\left(I_{A}, I_{B}, I_{\text {cross }}\right):=m\left(n, n, I_{A}, I_{B}, I_{\text {cross }}\right) .
$$

More notations

Our Theorem on p. 25 states (for $n \geq 4$)

$$
m(2, n, *, *, 1)=\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)\left(\left\lceil\frac{n}{2}\right\rceil+1\right) .
$$

For the case $a=b=n$ and use the abbreviation

$$
m_{n}\left(I_{A}, I_{B}, I_{\text {cross }}\right):=m\left(n, n, I_{A}, I_{B}, I_{\text {cross }}\right) .
$$

$I_{A}=\{0,1\}:(\mathcal{A}$ is a linear hypergraph $)$, we write '01-int'
$I_{A}=\{1\}:(\mathcal{A}$ is a 1 -intersecting hypergraph $)$, we write ' 1 -int' for $I_{\text {cross }}=\{1\}$ we use just ' 1 '.

More notations

Our Theorem on p. 25 states (for $n \geq 4$)

$$
m(2, n, *, *, 1)=\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)\left(\left\lceil\frac{n}{2}\right\rceil+1\right) .
$$

For the case $a=b=n$ and use the abbreviation

$$
m_{n}\left(I_{A}, I_{B}, I_{\text {cross }}\right):=m\left(n, n, I_{A}, I_{B}, I_{\text {cross }}\right) .
$$

$I_{A}=\{0,1\}:(\mathcal{A}$ is a linear hypergraph $)$, we write '01-int'
$I_{A}=\{1\}:(\mathcal{A}$ is a 1-intersecting hypergraph $)$, we write ' 1 -int' for $I_{\text {cross }}=\{1\}$ we use just ' 1 '.
E.g., Proposition p. 26:

$$
m_{n}(01-\mathrm{int}, *, *) \leq n^{2}+n+1 .
$$

The origin of the new problems, The ilickness of a clique partitions

Given a graph G, a clique (Biclique) partition of $E(G)$
$=$ parts are complete (complete bipartite) graphs.
The thickness of a partition is the maximum such that every vertex $x \in V(G)$ appears in at most s cliques (bicliques).

The origin of the new problems, The ilickness of a clique partitions

Given a graph G, a clique (Biclique) partition of $E(G)$
$=$ parts are complete (complete bipartite) graphs.
The thickness of a partition is the maximum such that every vertex $x \in V(G)$ appears in at most s cliques (bicliques). AIM: minimize thickness.

The origin of the new problems, The ilickness of a clique partitions

Given a graph G, a clique (Biclique) partition of $E(G)$
$=$ parts are complete (complete bipartite) graphs.
The thickness of a partition is the maximum such that every vertex $x \in V(G)$ appears in at most s cliques (bicliques).
AIM: minimize thickness. 'Most difficult' cases:
$T_{2 m}$ (cocktail party graph) $=K_{2 m} \backslash$ a perfect matching.
$B_{2 m}$ is obtained from $K_{m, m}$ by removing a perfect matching.

The origin of the new problems, The thickness of a clique partitions

Given a graph G, a clique (Biclique) partition of $E(G)$
$=$ parts are complete (complete bipartite) graphs.
The thickness of a partition is the maximum s such that every vertex $x \in V(G)$ appears in at most s cliques (bicliques).
AIM: minimize thickness. 'Most difficult' cases:
$T_{2 m}$ (cocktail party graph) $=K_{2 m} \backslash$ a perfect matching.
$B_{2 m}$ is obtained from $K_{m, m}$ by removing a perfect matching.

Theorem (just taking dual hypergraphs)

The max m that $T_{2 m}$ has a clique partition of thickness $n=$ the maximum size of an (n, n)-bounded 1-cross intersecting SPS in which $(\mathcal{A}, \mathcal{B})$ are also 1 -intersecting. $=m_{n}(1$-int, 1 -int, 1$)$

The origin of the new problems, The thickness of a clique partitions

Given a graph G, a clique (Biclique) partition of $E(G)$
$=$ parts are complete (complete bipartite) graphs.
The thickness of a partition is the maximum s such that every vertex $x \in V(G)$ appears in at most s cliques (bicliques).
AIM: minimize thickness. 'Most difficult' cases:
$T_{2 m}$ (cocktail party graph) $=K_{2 m} \backslash$ a perfect matching.
$B_{2 m}$ is obtained from $K_{m, m}$ by removing a perfect matching.

Theorem (just taking dual hypergraphs)

The max m that $T_{2 m}$ has a clique partition of thickness $n=$ the maximum size of an (n, n)-bounded 1-cross intersecting SPS in which $(\mathcal{A}, \mathcal{B})$ are also 1 -intersecting. $=m_{n}(1$-int, 1 -int, 1$)$
The maximum m such that $B_{2 m}$ has a biclique partition of thickness n is $m_{n}(*, *, 1)$.

The case of both \mathcal{A} and \mathcal{B} are linear hypergraphs

Then the bound of Prop. (26) can be approximately halved.

Theorem (a bit complicated double counting)

Suppose that $(\mathcal{A}, \mathcal{B})$ is an (n, n)-bounded 1-cross intersecting SPS of size m such that both \mathcal{A} and \mathcal{B} are linear hypergraphs. Then $m \leq \frac{1}{2} n^{2}+n+1$. I.e., $m_{n}(1$-int, 1 -int, 1$) \leq \frac{1}{2} n^{2}+n+1$.

The case of both \mathcal{A} and \mathcal{B} are linear hypergraphs

Then the bound of Prop. (26) can be approximately halved.

Theorem (a bit complicated double counting)

Suppose that $(\mathcal{A}, \mathcal{B})$ is an (n, n)-bounded 1-cross intersecting SPS of size m such that both \mathcal{A} and \mathcal{B} are linear hypergraphs. Then $m \leq \frac{1}{2} n^{2}+n+1$. l.e., $m_{n}(1$-int, 1 -int, 1$) \leq \frac{1}{2} n^{2}+n+1$.

Bellow we give three constructive lower bounds, large cross intersecting SPS such that \mathcal{A} is an intersecting linear hypergraph, showing that our results asymptotically the best possible, i.e.,
$m_{n}(1$-int, $*, 1)$ and $m_{n}(1$-int, 1-int, $*)=n^{2}-o\left(n^{2}\right)$, and $m_{n}(1$-int, 1 -int, 1$)=\frac{1}{2} n^{2}-o\left(n^{2}\right)$.
(We only give details of the boxed statement.)

We prove the lower bound for m_{n} in three steps.
(For each of the three statements) like Drake/Blokhuis/others

We prove the lower bound for m_{n} in three steps. (For each of the three statements) like Drake/Blokhuis/others
The function $m_{n}\left(I_{A}, I_{B}, I_{\text {cross }}\right)$ is monotone increasing in n, we need only for a dense set of special values of n.

We prove the lower bound for m_{n} in three steps. (For each of the three statements) like Drake/Blokhuis/others
The function $m_{n}\left(I_{A}, I_{B}, I_{\text {cross }}\right)$ is monotone increasing in n, we need only for a dense set of special values of n.
First, considering the double star we have $m_{n} \geq n$
(for all three functions and for all n).

We prove the lower bound for m_{n} in three steps.
(For each of the three statements) like Drake/Blokhuis/others
The function $m_{n}\left(I_{A}, I_{B}, I_{\text {cross }}\right)$ is monotone increasing in n, we need only for a dense set of special values of n.
First, considering the double star we have $m_{n} \geq n$ (for all three functions and for all n).
From now on, we only give details for the case (1 -int, 1 -int, $*$). We need $(\mathcal{A}, \mathcal{B})$ such that $\left|A_{i}\right|=n,\left|B_{i}\right|=n$ for every $i \in m$, both \mathcal{A} and \mathcal{B} are 1 -intersecting of sizes $m_{n}=n^{2}-o\left(n^{2}\right)$. Both \mathcal{A} and \mathcal{B} are almost projective planes!,

We prove the lower bound for m_{n} in three steps.
(For each of the three statements) like Drake/Blokhuis/others
The function $m_{n}\left(I_{A}, I_{B}, I_{\text {cross }}\right)$ is monotone increasing in n, we need only for a dense set of special values of n.

First, considering the double star we have $m_{n} \geq n$
(for all three functions and for all n).
From now on, we only give details for the case (1 -int, 1 -int, $*$).
We need $(\mathcal{A}, \mathcal{B})$ such that $\left|A_{i}\right|=n,\left|B_{i}\right|=n$ for every $i \in m$, both \mathcal{A} and \mathcal{B} are 1 -intersecting of sizes $m_{n}=n^{2}-o\left(n^{2}\right)$.
Both \mathcal{A} and \mathcal{B} are almost projective planes!, and
$A_{i} \cap B_{i}=\emptyset \forall i \in[m]$, and
$A_{i} \cap B_{j} \neq \emptyset$ for every $1 \leq i \neq j \leq m$.

Second step: The product of an affine plane and the double star

$A G(2, q)$ has
$q+1$ directions (parallel classes). Each class has q lines.
Let δ be a direction. $L_{1, \delta, \ldots,} L_{q, \delta}$ the lines of this class.

Take $q+1$ copies of the double star of size q.

Second step: The product of an affine plane and the double star

$A G(2, q)$ has
$q+1$ directions (parallel classes).
Each class has q lines.
Let δ be a direction.
$L_{1, \delta, \ldots,} L_{q, \delta}$ the lines of this class.

Take $q+1$ copies of the double star of size q.
Let $A_{i, \delta}:=L_{i, \delta} \cup A_{i}^{\delta}$ and $B_{i, \delta}:=L_{i+1, \delta} \cup B_{i}^{\delta}$.
We obtain $m_{2 q} \geq q^{2}+q$.
Call this construction $\mathcal{H}(2 q)$.

Cross intersecting almost projective planes

 Third step.

Suppose $p+2 q \leq n<p+4 q$, (p, q primes) where

$$
p \leq q^{2}+q \text { and } n-O\left(n^{5 / 8}\right)<p<n-2 \sqrt{n} .
$$

Cross intersecting almost projective planes

Third step.

Suppose $p+2 q \leq n<p+4 q$, (p, q primes) where

$$
p \leq q^{2}+q \text { and } n-O\left(n^{5 / 8}\right)<p<n-2 \sqrt{n} .
$$

We use the same kind of extension again to extend the affine plane $A G(2, p)$ with $(p+1)$ copies of $\mathcal{H}(2 q)$, the $2 q$-uniform construction from Step 2.

Cross intersecting almost projective planes

Third step.

Suppose $p+2 q \leq n<p+4 q$, (p, q primes) where

$$
p \leq q^{2}+q \text { and } n-O\left(n^{5 / 8}\right)<p<n-2 \sqrt{n} .
$$

We use the same kind of extension again to extend the affine plane $A G(2, p)$ with $(p+1)$ copies of $\mathcal{H}(2 q)$, the $2 q$-uniform construction from Step 2.
The size of $\mathcal{H}(2 q)$ is $q^{2}+q \geq p$ thus we need only the first p set pairs from it.

The End

Z. Füredi (newest results with A. Gyárfás and Z. Király)

A useful tool in combinatorics: Intersecting set-pair systems

The End

THANKS FOR YOUR ATTENTION!

Z. Füredi (newest results with A. Gyárfás and Z. Király)

A useful tool in combinatorics: Intersecting set-pair systems

