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Extended Abstract

A cross intersecting set pair system (SPS) of size m:

({A,‘}fiw {B,}Iri1) with A;N B; = () and A; N Bj £ 0.
It is an important tool of extremal combinatorics. Bollobas’ classical
result states that m < (?5°) if |A/| < aand |B;| < b for each i.
Our central problem is to see how this bound changes with additional
conditions (proofs, applications and generalizations).
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Extended Abstract

A cross intersecting set pair system (SPS) of size m:

({A,‘}fiw {B,}Iri1) with A,N B, =0 and A; N Bj #* (.
It is an important tool of extremal combinatorics. Bollobas’ classical
result states that m < (?5°) if |A/| < aand |B;| < b for each i.
Our central problem is to see how this bound changes with additional
conditions (proofs, applications and generalizations).
1-cross intersecting set pair system: |A; N B;| = 1 for all i # j.
We show connections to perfect graphs, clique partitions of graphs,
and finite geometries.
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Extended Abstract

A cross intersecting set pair system (SPS) of size m:

({A,‘}fiw {B,}Iri1) with A;N B; = () and A; N Bj £ 0.
It is an important tool of extremal combinatorics. Bollobas’ classical
result states that m < (?5°) if |A/| < aand |B;| < b for each i.
Our central problem is to see how this bound changes with additional
conditions (proofs, applications and generalizations).
1-cross intersecting set pair system: |A; N B;| = 1 for all i # j.
We show connections to perfect graphs, clique partitions of graphs,
and finite geometries. The max size of a 1-cross intersecting SPS is

@ atleast 5”2 for neven, a= b = n,
@ equalto (|3]+1)([3]1+1)ifa=2andb=n=> 4,
@ atmost |U, A,

@ asymptotically n? if {A;} is a linear hypergraph
(AN A < 1fori# ).,
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Some standard notation

[n] :={1,2,...,n}

(?) = set of k-sets, 25 power set

degg(x) degree of vertex x of graph G = (V, E)
Ng(x) C V, neighborhood

T C V(H) is a cover (transversal) of the hypergraph H = (V,€)
fTNne#£0 Veec.
7(H) :=min|T|. (covering number/transversal number).
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Some standard notation

[n] :={1,2,...,n}

(?) = set of k-sets, 25 power set

degg(x) degree of vertex x of graph G = (V, E)
Ng(x) C V, neighborhood

T C V(H) is a cover (transversal) of the hypergraph H = (V,€)
fTNne#£0 Veec.
7(H) :=min|T|. (covering number/transversal number).

M C £ is a matching (parallel edges) if enée’ = 0 Ve # € € M.
v(H) := min |M|. (matching number of ).

v =1 <= H is intersecting hpgr.
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Cross intersecting set pair systems

A cross intersecting set pair system (SPS) of size m:
({A,’}irl1, {B,}f;” with A; N B; = () and A; N Bj # (.

Theorem (Bollobas 1965)

(A1,,B1), (A2, B2), ..., (Am, Bm) set pairs with
|Ail < a, |Bj| < band
A NB;= 0, and

AiNB;# 0 foralli #j, then m < (agb)

Best possible:

A= (). 5= (), X
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Proof of Bollobas’ theorem

Conj'd by Berge/ Ehrenfeucht, Mycielsky 1973. Proof by
Jaeger, Payan 1971, Tarjan 1975, Katona 1974, (Alon / Frankl).

Given (A, B), a cross intersecting SPS. X := UA U B.

7r(x} o 9 0Q

00@@e0C @209 oaN
SN “m 27
AL B:

Figure: A type i permutation of X.
Call a permutation type i if A; <, B;.
Note that type i # type .
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Proof of Bollobas’ theorem

Conj'd by Berge/ Ehrenfeucht, Mycielsky 1973. Proof by
Jaeger, Payan 1971, Tarjan 1975, Katona 1974, (Alon / Frankl).

Given (A, B), a cross intersecting SPS. X := UA U B.

7r(x} LA 9 0Q

oo..oo.OQOQQQ [*l % S}
SN “m 27
AL B:

Figure: A type i permutation of X.
Call a permutation type i if A; <, B;.
Note that type i # type j.
Prob(r is of type i) = 1/ (A1)

Therefore
1
> damEn <1 0

i (|A,|)
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The aim of this lecture

1. To show that cross intersecting SPS is an important tool,
by giving proofs, examples, generalizations, applications.
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The aim of this lecture

1. To show that cross intersecting SPS is an important tool,
by giving proofs, examples, generalizations, applications.

2.

To investigate 1-cross intersecting SPS. (|A;N Bj| = 1)
New results are joint with Gyarfas and Kiraly, and
related to one of my favorite structures, finite affine and
projective planes

Figure: The Fano plane.
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The kernel of intersecting families

DEF: Suppose # is intersecting. S is a kernel of H if
Snenf#( Ve, feH.

E.g., the kernel of {(5)} (for |S| < 2r) is itself,
the kernel of Kj ,, (star) is a singleton.
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The kernel of intersecting families

DEF: Suppose # is intersecting. S is a kernel of H if
Snenf#( Ve, feH.

E.g., the kernel of {(5)} (for |S| < 2r) is itself,
the kernel of Kj ,, (star) is a singleton.

Theorem (Cafczynska-Kartowicz 1964)

Vr ACK(r) < oo such that:
If H is intersecting, |e| < r Ve € H, then 3S, |S| < CK(r).

CK(1) =1, CK(2) = 3, CK(3) > 7,
CK(q+1) > g+ g + 1 if 3 projective plane

S PAN
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The kernel of intersecting families,

A proof by Katona’s permutation method by Erdds, Lovasz 1973.
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The kernel of intersecting families,

A proof by Katona’s permutation method by Erdds, Lovasz 1973.

Given H, intersecting, |e| < rVe € H, let X := UH.
Remove element x if H|(X \ {x}) is still intersecting.
Repeat until we get a critical S:
Vx € S JA(x), B(x) € Hpew A(Xx) N B(x) = {x}.
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The kernel of intersecting families,

A proof by Katona’s permutation method by Erdés, Lovasz 1973.
Given H, intersecting, |e| < rVe € H, let X := UH.
Remove element x if H|(X \ {x}) is still intersecting.
Repeat until we get a critical S:
Vx € S JA(X), B(x) € Hpew A(Xx)N B(x) = {x}.

%

oo ’\O'\ OC OOOOOQOQE)Q
Alx 3()

Figure: A type x permutation of X.

Call a permutation type x if A(x) <, B(x). Type x # Type y.
Prob(r is of type x) = ..., Y ,egProb <1, CK(r)<5(* 7).

r
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The kernel of intersecting families,

A proof by Katona’s permutation method by Erdds, Lovasz 1973.

Given H, intersecting, |e| < rVe € H, let X := UH.
Remove element x if H|(X \ {x}) is still intersecting.
Repeat until we get a critical S:

Vx € S JA(X), B(x) € Hpew A(Xx)N B(x) = {x}.

x
CO®OBROCOBBOOOOS0OQOOOQ

g A
Alx) - B(x)

Figure: A type x permutation of X.

Call a permutation type x if A(x) < B(x). Type x # Type y.
Prob(r is of type x) = ..., Y ,egProb <1, CK(r)<5(* 7).

New results, see: Kang, Ni, Shan 2017, Polcyn, Rucinski 2017,
Henning, Yeo 2014, Tuza 1994/1996 (surveys), . ..

Z. Firedi (newest results with A. Gyarfas and Z. Kiraly)
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The kernel could be exponential

A construction by Erdds, Lovasz 1973.

V]

2 2{ (.2\;{-)

(
{

oooJoaooo Go
Y

Take |V|=2r-2,|Z| = 1(3(3),vnZz=0.
V partition N of V, |A| = |B| =r — 1 assign z .= z(I) € Z.

N|—

Z. Fiuredi (newest results with A. Gyarfas and Z. Kiraly)
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The kernel could be exponential

A construction by Erdds, Lovasz 1973.

Ze2

Take |V|=2r-2,|Z| = }(%F), VnZ=0.
V partition N of V, |A| = |B| =r — 1 assign z .= z(I) € Z.
Let {A(2),B(z)} := {Au{z},BU{z}}.
Then H is intersecting, critical, V() can not be shrunk
1/2r—2
> (2r — — O
CK(r) > (2r 2)+2<r1 )

New results, generalizations, see: Alon, Firedi 1987, Talbot 2004,
Tuza 1994/1996 (surveys), ...
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Sperner families, LYM inequality

DEF: H c 2[" is a Sperner family if A ¢ B VA, B € H.

Theorem (Sperner)

1< (o)
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Sperner families, LYM inequality

DEF: H c 2[" is a Sperner family if A ¢ B VA, B € H.

Theorem (Sperner)

1< (o)

Theorem (LYM: Lubell, Yamamoto, Meshalkin)

ZAG'H

1

<1.

(a) ~

Proof: (A, X'\ A) is an cross intersetcing SPS. O
Equality iff |A| =r VA e H.
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Cross intersecting k-tuples

DEF: (A, B;, ..., Z))1<i<m form a family of cross intersecting
k-tuples if these k sets are pairwise disjoint and
Vi#j 3IX#Ye{AB,...,Z} suchthat X;nY; # 0.

Theorem (Tuza)

Ifpr + -+ px =1,Vp; >0, then

pr ol < 1
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Cross intersecting k-tuples

DEF: (A, B;, ..., Z))1<i<m form a family of cross intersecting
k-tuples if these k sets are pairwise disjoint and
Vi#j 3IX#Ye{AB,...,Z} suchthat X;nY; # 0.

Theorem (Tuza)
Ifpr + -+ px =1,Vp; >0, then

pr ol < 1

Corollary (Take p1 = po = 1/2.)

{Aj, Bi}1<i<m cross intersecting SPS then m < 2m>{|Al+I5i},
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Cross intersecting k-tuples

DEF: (A, B;, ..., Z))1<i<m form a family of cross intersecting
k-tuples if these k sets are pairwise disjoint and
Vi#j 3IX#Ye{AB,...,Z} suchthat X;nY; # 0.

Theorem (Tuza)
Ifpr + -+ px =1,Vp; >0, then

pr ol < 1

Corollary (Take p1 = po = 1/2.)

{Aj, Bi}1<i<m cross intersecting SPS then m < 2m>{|Al+I5i},

Even more, it is enough to suppose that for all / #
max{|A; N Bj|,|A;N Bj|} > 0.

Other results on k-tuples: Alon 1985.

Z. Fiuredi (newest results with A. Gyarfas and Z. Kiraly)
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A geometric application, tangent simplices

DEF: S, S’ c RY are tangent simplices if
intSNintS =0 anddim(SNS)=d —1.

Theorem (Perles)

Suppose Sy, ..., Sm C RY pairwise tangent.
Then m < 29+1,

Four tangent triangles
J. Zaks: h(2) = 4, h(3) = 8, h(d) > 2.
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Tangent simplices, a using SPS

Perles’ proof.
Suppose Sy, ..., Sm C RY pairwise tangent.

Let Hy, ..., Hy all hyperplanes, tangent to some faces
(v<m(d+1)).

g +0

Take a general point O and given S;
A; := tangent hyperplanes H, such that O € H and S; C H.
Then {‘A,‘ﬂBj|,’AjﬂBi|}:{0,1}. [
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Pairs of disjoint subspaces

DEF: A, B c RY are disjoint linear subspaces if
AN B=1{0}, ie., dim(A+ B)=dim(A) -+ dim(B).
Non-disjoint: dim(AN B) > 1.

Theorem (Lovasz)

Suppose that (A;, Bj)1<i<m is a cross intersecting family of
disjoint pairs of subspaces of dimensions a and b, i.e.,
dim(A;) < a, dim(B;) < b and
dim(A,- N B,) =0 and dim(A,- N Bj) >1.

Then m < (a;—b)_
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Pairs of disjoint subspaces

DEF: A, B c RY are disjoint linear subspaces if
AN B=1{0}, ie., dim(A+ B)=dim(A) -+ dim(B).
Non-disjoint: dim(AN B) > 1.

Theorem (Lovasz)
Suppose that (A;, Bj)1<i<m is a cross intersecting family of
disjoint pairs of subspaces of dimensions a and b, i.e.,
dim(A;) < a, dim(B;) < b and
dim(A,- N B,) =0 and dim(A,- N Bj) >1.

Then m < (a;—b)_

Implies Bollobas.
Given a cross intersecting SPS (A, B): take d = | U AU B| pairwise

orthogonal vectors {e; : t € [d]} and let A= Span ({e; : t € Aj}).
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A consequence of Lovasz geometric method

(A1,,B1),...,(Am, Bm) set pairs with |A;| < a, |B;| < b and
AiNB; <t andAiNB;>tforalli#j.
at+b-—2t
a—t )

Then m < <

Best possible:
V XUT, |X|_a+b 2t, |T|_tand
A={Ac (), TCA,B:={Be({),TcB},
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Another consequence, skew cross intersecting
SPS’s

Theorem (Frankl/ Kalai)
(A1,,B1),...,(Am, Bm) set pairs with |A;| < a, |B;| < b and

AN B =10,and A;n B+ forall|i < jl.

Then m < <a:b>.

Best possible, but many more extremal families.

Z. Furedi (newest results with A. Gyarfas and Z. Kiraly) [ A useful tool in combinatorics: Intersecting set-pair systems




Another consequence, skew cross intersecting

SPS’s

Theorem (Frankl/ Kalai)
(A1,,B1),...,(Am, Bm) set pairs with |A;| < a, |B;| < b and

AN B =10,and A;n B+ forall|i < jl.
a+b
2 )

Then m < <

Best possible, but many more extremal families.

True for cross t-intersecting, also for the subspace version.
But no optimal LYM type inequality is known.

| A useful tool in combinatorics: Intersecting set-pair systems
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Another consequence, skew cross intersecting
SPS’s

Theorem (Frankl/ Kalai)
(A1,,B1),...,(Am, Bm) set pairs with |A;| < a, |B;| < b and

AN B =10,and A;n B+ forall|i < jl.

Then m < <a+b>.

a

Best possible, but many more extremal families.

True for cross t-intersecting, also for the subspace version.
But no optimal LYM type inequality is known.

Alon and Kalai: used skew cross intersecting SPS’s

to prove the Upper Bound Theorem of McMullen:

An exact formula for the max number of t dim faces of an
n-vertex convex polytope with n vertices.
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r-critical graphs

DEF: (Gallai) The graph G is r-critical if
7(G\e) < 7(G) Vee E(G)
E.g., Cor1, Kriy.
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r-critical graphs
DEF: (Gallai) The graph G is r-critical if
7(G\e) < 7(G) Vee E(G)
E.g., Cor 1, Kyt

Theorem (Erdés, Gallai)
G is T-critical, then |V (G)| < 27.

Theorem (Erdds, Hajnal, Moon)

G is T-critical, then e(G) < (T : 1) .

2

Best possible. (Originally they stated it about G).
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r-critical graphs
DEF: (Gallai) The graph G is r-critical if
7(G\e) < 7(G) Vee E(G)
E.g., Cor 1, Kyt

Theorem (Erdés, Gallai)
G is T-critical, then |V (G)| < 27.

Theorem (Erdds, Hajnal, Moon)

2

G is T-critical, then e(G) < (T : 1) .

Best possible. (Originally they stated it about G).

Proof of the EHM thm:

Consider A(e) := e for edge e € E(G), and

B(e) := a covering set of the edges of E(G) \ {e}.

They form a cross intersecting SPS of set sizes 2 and 7 — 1. O
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r-critical hypergraphs

T(H\e)<7(H) Vee E(H)
E.g., Erdds-Lovasz construction for CK(r), K,T”‘1.
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r-critical hypergraphs

T(H\e)<7(H) Vee E(H)
E.g., Erdds-Lovasz construction for CK(r), K,T+r_1.

Theorem (Bollobas 1965)

H is T-critical, r-uniform, then |E()| < (T e 1).
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r-critical hypergraphs

T(H\e)<7(H) Vee E(H)
E.g., Erdds-Lovasz construction for CK(r), K,T+r_1.

Theorem (Bollobas 1965)

H is T-critical, r-uniform, then |E()| < (T e 1).

What about f(7, r) := max |V(H)|, H is T-critical, r-uniform.
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r-critical hypergraphs

T(H\e)<7(H) Vee E(H)
E.g., Erdds-Lovasz construction for CK(r), K,T+r_1.

Theorem (Bollobas 1965)

H is T-critical, r-uniform, then |E()| < (T e 1).

What about f(7, r) := max |V(H)|, H is T-critical, r-uniform.

Theorem (Petruska, Szemerédi r = 3, Gyarfas, Lehel, Tuza

1982, finally Tuza)

H is T-critical, then |V(H)| < ("I + (71157).

Best upper bound is still unknown.

Z. Furedi (newest results with A. Gyarfas and Z. Kiraly) [ A useful tool in combinatorics: Intersecting set-pair systems



PART Il. 1-cross intersecting families

DEF: A 1-cross intersecting set pair system (SPS) of size m:
{A} B with AinBi=0and||ANB]| =1 Vi#]j.

Z. Furedi (newest results with A. Gyarfas and Z. Kiraly) [ A useful tool in combinatorics: Intersecting set-pair systems




PART Il. 1-cross intersecting families

DEF: A 1-cross intersecting set pair system (SPS) of size m:
{A} B with AinBi=0and||ANB]| =1 Vi#]j.
An SPSis (a, b)-bounded if |A;] < aand |B;| < b for each i.
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PART Il. 1-cross intersecting families

DEF: A 1-cross intersecting set pair system (SPS) of size m:
({A}, {B} ) with AinB;=0and||ANBj|=1| Vi#].
An SPSis (a, b)-bounded if |A;] < aand |B;| < b for each i.

/E\ A o/.\‘
"-°/ P e /-/

A Cs and Cs form a (2, 2)-bounded 1-cross int’ SPS.
It is optimal: mo(x,%,1) =5
The edges of a Cy,. 1 and independent covers:
a (2, n)-bounded 1-cross intersecting SPS.
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The product
construction AR

A

CafreEs

)
=
Ac A
B. Q @ LR.'L‘BJ.
=

Proposition

If (a1, by)-bounded and (ay, bo)-bounded 1-cross intersecting
SPS exist with sizes my and my, then (a-+a, by + b )-bounded
1-cross intersecting SPS also exists of size my - mo.

Z. Firedi (newest results with A. Gyarfas and Z. Kiraly)
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The product
construction AR

A

Car\es

fc)
=
Ac A
B b @ ‘ﬁ;\%_
2

Proposition

If (a1, by)-bounded and (ay, bo)-bounded 1-cross intersecting
SPS exist with sizes my and my, then (a-+a, by + b )-bounded
1-cross intersecting SPS also exists of size my - mo.

Proof Given (A4, B1) and (A2, B>) on vertex sets V.
Take my pairwise disjoint ground sets VAN V2’"1 with copies
(.AIQ,BIZ), e.g., ./4’2 = {A,’J e ,A,"mz} e

Z. Furedi (newest results with A. Gyarfas and Z. Kiraly) [ A useful tool in combinatorics: Intersecting set-pair systems




The product
construction AR

A

Car\es

fc)
=
Ac A
B § @ ‘ﬁ;\%_
2

Proposition

If (a1, by)-bounded and (ay, bo)-bounded 1-cross intersecting
SPS exist with sizes my and my, then (a-+a, by + b )-bounded
1-cross intersecting SPS also exists of size my - mo.

Proof Given (A4, B1) and (A2, B>) on vertex sets V.

Take my pairwise disjoint ground sets V3, ..., V2’"1 with copies
(AL, Bh), e.9., Ab = {Ai1,. ., Aimy} -

The pairs A} ; = AU A;j, Bj; = B;U B; form a 1-cross
intersecting SPS, |A} | < a1 + az and |B;;| < by + by. O

Z. Furedi (newest results with A. Gyarfas and Z. Kiraly) [ A useful tool in combinatorics: Intersecting set-pair systems




1-cross intersecting SPS can be exponential

There exists an (n, n)-bounded 1-cross intersecting SPS of size
572 if n is even and of size 2 - 5("~1)/2 jf n is odd. O

Z. Furedi (newest results with A. Gyarfas and Z. Kiraly) [ A useful tool in combinatorics: Intersecting set-pair systems




1-cross intersecting SPS can be exponential

There exists an (n, n)-bounded 1-cross intersecting SPS of size
572 if n is even and of size 2 - 5("~1)/2 jf n is odd. O

The product construction gives a (3, 3)-bounded 1-cross
intersecting SPS of size 10.

We have another example, the pairs

({i, i+1,i+2}, {i+3, i+6, i+9}) taken (mod 10) has 10 vertices.

Z. Furedi (newest results with A. Gyarfas and Z. Kiraly) [ A useful tool in combinatorics: Intersecting set-pair systems



1-cross intersecting SPS can be exponential

There exists an (n, n)-bounded 1-cross intersecting SPS of size
572 if n is even and of size 2 - 5("~1)/2 jf n is odd. O

The product construction gives a (3, 3)-bounded 1-cross
intersecting SPS of size 10.

We have another example, the pairs

({i, i+1,i+2}, {i+3, i+6, i+9}) taken (mod 10) has 10 vertices.

Samuel Spiro (sspiro@ucsd.edu) informed us that his computer
program successfully checked that 10 is indeed the largest size,

my(x,*,1) = 2,
mg(*, *, 1) =5,
ms(*,*,1) =10,
my(*,%,1) > 25.
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Fekete’s Lemma on subadditive sequences implies

VB < lim (mp(x,%,1)/"=3 <4
n—o0
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Fekete’s Lemma on subadditive sequences implies

VB < lim (mp(x,%,1))Y/"=3 <4.
n—oo

A challenging problem is to decrease essentially Bollobas’
upper bound:

There exists a positive ¢ such that mn(x,+,1) < (1 —¢) (%) for
everyn> 2.
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A Fischer’s inequality for cross 1-intersecring SPS

Proposition ( m < | U A|)

Let (A, B) be 1-cross intersecting, V := UA. The char. vectors
of the edges of A are linearly independent inRR" .
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A Fischer’s inequality for cross 1-intersecring SPS

Proposition ( m < | U A|)

Let (A, B) be 1-cross intersecting, V := UA. The char. vectors
of the edges of A are linearly independent inRR" .

Let a; (resp. b;) denote the characteristic vector of A; (resp. B;),
aj(v) =1forv e Vifandonly if v € A;. Otherwise a;(v) = 0.
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A Fischer’s inequality for cross 1-intersecring SPS

Proposition ( m < | U A|)
Let (A, B) be 1-cross intersecting, V := UA. The char. vectors
of the edges of A are linearly independent inRR" .

Let a; (resp. b;) denote the characteristic vector of A; (resp. B;),
aj(v) =1forv e Vifandonly if v € A;. Otherwise a;(v) = 0.

Suppose
m
Z Aja; = 0.
i=1
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A Fischer’s inequality for cross 1-intersecring SPS

Proposition ( m < | U A|)
Let (A, B) be 1-cross intersecting, V := UA. The char. vectors
of the edges of A are linearly independent inRR" .

Let a; (resp. b;) denote the characteristic vector of A; (resp. B;),
aj(v) =1forv e Vifandonly if v € A;. Otherwise a;(v) = 0.

Suppose
m
Z Aja; = 0.
i=1

Take the dot product with b;. Since |A; N B;| = 1 for i # j and
|Ai N Bj| =0, we get

(gm; )\,-> —)=0.
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A Fischer’s inequality for cross 1-intersecring SPS

Proposition ( m < | U A|)
Let (A, B) be 1-cross intersecting, V := UA. The char. vectors
of the edges of A are linearly independent inRR" .

Let a; (resp. b;) denote the characteristic vector of A; (resp. B;),
aj(v) =1forv e Vifandonly if v € A;. Otherwise a;(v) = 0.

Suppose
m
Z Aja; = 0.
i=1

Take the dot product with b;. Since |A; N B;| = 1 for i # j and
|Ai N Bj| =0, we get

(gm; )\,-> —)=0.

Add up for all j: (m—1)>_", X\; = 0, consequently -7, \; =0
and thus )\; = 0 for all j. L]

Z. Furedi (newest results with A. Gyarfas and Z. Kiraly) [ A useful tool in combinatorics: Intersecting set-pair systems



Lovasz’ characterization of perfect graphs

A special case of the previous Proposition can be used in the
non-trivial part of Gasparyan’s 1996 proof of Lovasz’s theorem:

A graph G is perfect if and only if
[V(H)| < a(H)w(H) (1)

holds for all induced subgraphs H of G.
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Lovasz’ characterization of perfect graphs

A special case of the previous Proposition can be used in the
non-trivial part of Gasparyan’s 1996 proof of Lovasz’s theorem:

A graph G is perfect if and only if
[V(H)| < a(H)w(H) (1)

holds for all induced subgraphs H of G.

Proof. In a minimal imperfect graph G there is a 1-cross
intersecting SPS of size m = o(G)w(G) + 1 defined by
independent sets and complete subgraphs. By the previous
Proposition, |V(G)| > a(G)w(G) + 1, contradicting (1). O
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Lovasz’ characterization of perfect graphs

A special case of the previous Proposition can be used in the
non-trivial part of Gasparyan’s 1996 proof of Lovasz’s theorem:

A graph G is perfect if and only if
[V(H)| < a(H)w(H) (1)

holds for all induced subgraphs H of G.

Proof. In a minimal imperfect graph G there is a 1-cross
intersecting SPS of size m = o(G)w(G) + 1 defined by
independent sets and complete subgraphs. By the previous
Proposition, |V(G)| > a(G)w(G) + 1, contradicting (1). O

Corollary (Lovasz)
A graph is perfect if and only if its complement is perfect.
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(2, n)-bounded 1-cross intersecting SPS

Theorem (The case of A is a graph.)

Letn> 4, and let (A, B) be a (2, n)-bounded 1-cross
intersecting SPS of size m. Then

s (+1) (3] +)

Best possible. For n = 2, 3 the exact values are m=5,7.

NSNS

An extremal family: | 2| + 1 copies of stars with [J] + 1 edges.

Z. Furedi (newest results with A. Gyarfas and Z. Kiraly) [ A useful tool in combinatorics: Intersecting set-pair systems




Linear hypergraphs and cross 1-intersecting SPS

A hypergraph H is called linear if the intersection of any two
different edges has at most one vertex.

E.g., affine planes AG(2, q). Usually V(AG(2,q)) = IE‘%,
g vertices and the hyperedges = g° + q lines.
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Linear hypergraphs and cross 1-intersecting SPS

A hypergraph H is called linear if the intersection of any two
different edges has at most one vertex.

E.g., affine planes AG(2, q). Usually V(AG(2,q)) = IE‘%,
g vertices and the hyperedges = g° + q lines.

H is called 1-intersecting if [ HNH'|=1forall H H € H
whenever H # H'.
E.g., finite projective planes PG(2, q).
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Linear hypergraphs and cross 1-intersecting SPS

A hypergraph H is called linear if the intersection of any two
different edges has at most one vertex.

E.g., affine planes AG(2, q). Usually V(AG(2,q)) = IE‘%,

g vertices and the hyperedges = g° + q lines.

H is called 1-intersecting if [ HNH'|=1forall H H € H
whenever H # H'.
E.g., finite projective planes PG(2, q).

If one of (A, B), say A, in an SPS is linear, then
(without any assumption on |B; N Bj|, |A; N Bj|).

Proposition (26)

’ The size of an (n, n)-bounded cross intersecting SPS (A, B) Wit"l‘
linear A is at most n® + n+ 1. O

<
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S
V.

(¢« S
b

The vertex set of a double star of size s consist of
{vij |1 <, j<s, i # j} and two additional vertices w, and w.
Define for i € [s] A;j:={wa}U{v;;j|1<j<s, j#i}and

Bi:={wpt U{vi[1<j<s, j#I}.
(A, B) is a 1-cross intersecting SPS of size s containing
s-element sets such that both A and B are 1-intersecting.

Z. Firedi (newest results with A. Gyarfas and Z. Kiraly)
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Notation and general setting

Let a,b > 0 and /4, I, I.1oss three sets of non-negative integers.
Let m(a, b, Ia, Is, lross) the maximum size m of a cross
intersecting SPS (.A, B) with the following conditions.

i) AinB;j =10 forevery 1 <i<m,
iv-v) |AiNAjl € Ia, |BiNBj| € Ip forevery 1 <i#j<m,
Vi) 0 < |AiN Bj| € loss forevery 1 <ij<m.
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Notation and general setting

Let a,b > 0 and /4, I, I.1oss three sets of non-negative integers.
Let m(a, b, Ia, Is, lross) the maximum size m of a cross
intersecting SPS (.A, B) with the following conditions.

i) AinB;j =10 forevery 1 <i<m,
iv-v) |AiNAjl € Ia, |BiNBj| € Ip forevery 1 <i#j<m,
Vi) 0 < |AiN Bj| € loss forevery 1 <ij<m.
We suppose that 0 € .55, and m > 2.
If a constraint in iv)—vi) is vacuous (i.e., {0,1,...,|X|} C Ix or
{1,...,min{a, b}} C Iss) then we use the symbol =
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Notation and general setting

Let a,b > 0 and /4, I, I.1oss three sets of non-negative integers.
Let m(a, b, Ia, Is, lross) the maximum size m of a cross
intersecting SPS (.A, B) with the following conditions.

i) AinB;j =10 forevery 1 <i<m,
iv-v) |AiNAjl € Ia, |BiNBj| € Ip forevery 1 <i#j<m,
Vi) 0 < |AiN Bj| € loss forevery 1 <ij<m.
We suppose that 0 € .55, and m > 2.
If a constraint in iv)—vi) is vacuous (i.e., {0,1,...,|X|} C Ix or
{1,...,min{a, b}} C Iss) then we use the symbol =
Bollobas’ theorem:

mab.) = (17°)

Z. Firedi (newest results with A. Gyarfas and Z. Kiraly)
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More notations

Our Theorem on p.25 states (for n > 4)

m(2, n, %, %, 1) = QgJ +1) U'ﬂ +1).
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More notations

Our Theorem on p.25 states (for n > 4)
me.nn = (|3 +9) (5] 1)

For the case a = b = n and use the abbreviation

mn(IA: I37 /cross) = m(n7 n, /A7 /B7 /cross)~
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More notations

Our Theorem on p.25 states (for n > 4)
me.nn = (|3 +9) (5] 1)

For the case a = b = n and use the abbreviation
mrI(IAt I37 /Cl‘OSS) = m(n7 n7 /A7 /B7 ICFOSS)'
Ia={0,1}: (Ais alinear hypergraph), we write ‘01-int’

Ia={1}: (Ais a 1-intersecting hypergraph), we write ‘1-int’
for Ioss = {1} we use just 1°.
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More notations

Our Theorem on p.25 states (for n > 4)
me.nn = (|3 +9) (5] 1)

For the case a = b = n and use the abbreviation

mn(IA: I37 /cross) = m(n7 n, /A7 /B7 /cross)~

Ia={0,1}: (Ais alinear hypergraph), we write ‘01-int’
Ia={1}: (A is a 1-intersecting hypergraph), we write ‘1-int
for Ioss = {1} we use just 1°.
E.g., Proposition p. 26:

mp(01-int, %, %) < M +n+ 1.

’
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The origin of the new problems,

The of a clique partitions

Given a graph G, a clique (Biclique) partition of E(G)

= parts are complete (complete bipartite) graphs.
The thickness of a partition is the maximum s such that every
vertex x € V(@) appears in at most s cliques (bicliques).
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The origin of the new problems,

The of a clique partitions

Given a graph G, a clique (Biclique) partition of E(G)

= parts are complete (complete bipartite) graphs.
The thickness of a partition is the maximum s such that every
vertex x € V(@) appears in at most s cliques (bicliques).

AIM: minimize thickness.
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The origin of the new problems,

The of a clique partitions

Given a graph G, a clique (Biclique) partition of E(G)

= parts are complete (complete bipartite) graphs.
The thickness of a partition is the maximum s such that every
vertex x € V(@) appears in at most s cliques (bicliques).

AIM: minimize thickness. ‘Most difficult’ cases:

Tom (cocktail party graph) = Ko\ @ perfect matching.
B is obtained from K, m by removing a perfect matching.
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The origin of the new problems,

The of a clique partitions

Given a graph G, a clique (Biclique) partition of E(G)

= parts are complete (complete bipartite) graphs.
The thickness of a partition is the maximum s such that every
vertex x € V(@) appears in at most s cliques (bicliques).

AIM: minimize thickness. ‘Most difficult’ cases:

Tom (cocktail party graph) = Ko\ @ perfect matching.
B is obtained from K, m by removing a perfect matching.

Theorem (just taking dual hypergraphs)

The max m that T>, has a clique partition of thickness n = the
maximum size of an (n, n)-bounded 1-cross intersecting SPS in
which (A, B) are also 1-intersecting. = mp(1-int, 1-int, 1)
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The origin of the new problems,

The of a clique partitions

Given a graph G, a clique (Biclique) partition of E(G)

= parts are complete (complete bipartite) graphs.
The thickness of a partition is the maximum s such that every
vertex x € V(@) appears in at most s cliques (bicliques).

AIM: minimize thickness. ‘Most difficult’ cases:

Tom (cocktail party graph) = Ko\ @ perfect matching.
B is obtained from K, m by removing a perfect matching.

Theorem (just taking dual hypergraphs)

The max m that T>, has a clique partition of thickness n = the
maximum size of an (n, n)-bounded 1-cross intersecting SPS in
which (A, B) are also 1-intersecting. = mp(1-int, 1-int, 1)

The maximum m such that B>, has a biclique partition of
thickness n is mpy(x, *, 1).
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The case of both 4 and 5 are linear hypergraphs
Then the bound of Prop. (26) can be approximately halved.

Theorem (a bit complicated double counting)

Suppose that (A, B) is an (n, n)-bounded 1-cross intersecting
SPS of size m such that both A and B are linear hypergraphs.
Thenm < In? + n+1. le, my(1-int, 1-int,1) < 1n? + n+ 1.

Z. Fiuredi (newest results with A. Gyarfas and Z. Kiraly)
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The case of both 4 and 5 are linear hypergraphs

Then the bound of Prop. (26) can be approximately halved.

Theorem (a bit complicated double counting)

Suppose that (A, B) is an (n, n)-bounded 1-cross intersecting
SPS of size m such that both A and B are linear hypergraphs.
Thenm < In? + n+1. le, my(1-int, 1-int,1) < 1n? + n+ 1.

Bellow we give three constructive lower bounds, large cross
intersecting SPS such that A is an intersecting linear
hypergraph, showing that our results asymptotically the best
possible, i.e.,

mp(1-int, x, 1) and | mp(1-int, 1-int, ¥) = n? — o(n?) |,
and my(1-int, 1-int, 1) = 5n? — o(n?).

(We only give details of the boxed statement.)
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We prove the lower bound for mj in three steps.
(For each of the three statements) like Drake/Blokhuis/others
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We prove the lower bound for mj in three steps.
(For each of the three statements) like Drake/Blokhuis/others

The function mu(/a, I, kross) iS monotone increasing in n,
we need only for a dense set of special values of n.
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We prove the lower bound for mj in three steps.
(For each of the three statements) like Drake/Blokhuis/others

The function mu(/a, I, kross) iS monotone increasing in n,
we need only for a dense set of special values of n.

First, considering the double star we have m, > n
(for all three functions and for all n).
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We prove the lower bound for mj in three steps.
(For each of the three statements) like Drake/Blokhuis/others

The function mu(/a, I, kross) iS monotone increasing in n,
we need only for a dense set of special values of n.

First, considering the double star we have m, > n
(for all three functions and for all n).

From now on, we only give details for the case (1-int, 1-int, *).
We need (A, B) such that |A;| = n, |Bj| = n forevery i e m,
both A and B are 1-intersecting of sizes m, = n?> — o(n?).

Both A and B are almost projective planes!,
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We prove the lower bound for mj in three steps.
(For each of the three statements) like Drake/Blokhuis/others

The function mu(/a, I, kross) iS monotone increasing in n,
we need only for a dense set of special values of n.

First, considering the double star we have m, > n
(for all three functions and for all n).

From now on, we only give details for the case (1-int, 1-int, *).
We need (A, B) such that |A;| = n, |Bj| = n foreveryic m,
both A and B are 1-intersecting of sizes m, = n?> — o(n?).
Both A and B are almost projective planes!, and
AiNnB;=0Vie[m],and

AiNnB;#0 forevery 1 <i#j<m.
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Second step:
The product of an affine plane and

the double star

AG(2,q) has

g + 1 directions

(parallel classes).

Each class has s
g lines. =
Let d be a Sy
direction.

L175,. . Lq,(; the
lines of this class.

Take g + 1 copies of the double star of size q.
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Second step:
The product of an affine plane and

the double star

AG(2,q) has

q + 1 directions
(parallel classes).
Each class has

g lines.

Let § be a
direction.

L175,. . Lq75 the
lines of this class.
Take g + 1 copies of the double star of size q.
Let A,'75 = L,"(; @) A? and B,"(; = Lf+1,5 U BI(S

We obtain moq > g% + q. Call this construction H(2q).
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Cross intersecting almost projective planes
Third step.

Suppose p+2q9 < n< p+4q, (p,q primes) where
p<q®+qandn—O(n°8) < p<n—2yn.
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Cross intersecting almost projective planes
Third step.

Suppose p+2q9 < n< p+4q, (p,q primes) where
p<q®+qandn—O(n°8) < p<n—2yn.

We use the same kind of extension again to extend the
affine plane AG(2, p) with (p+1) copies of #(2q),
the 2g-uniform construction from Step 2.
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Cross intersecting almost projective planes
Third step.

Suppose p+2q9 < n< p+4q, (p,q primes) where
p<q®+qandn—O(n°8) < p<n—2yn.

We use the same kind of extension again to extend the

affine plane AG(2, p) with (p+1) copies of #(2q),

the 2g-uniform construction from Step 2.

The size of H(2q) is g + q > p thus we need only the first p
set pairs from it. O

Z. Furedi (newest results with A. Gyarfas and Z. Kiraly) [ A useful tool in combinatorics: Intersecting set-pair systems




The End
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The End
THANKS FOR YOUR ATTENTION!
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