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Extended Abstract

A cross intersecting set pair system (SPS) of size m:
({Ai}m

i=1, {Bi}m
i=1) with Ai ∩ Bi = ∅ and Ai ∩ Bj 6= ∅.

It is an important tool of extremal combinatorics. Bollobás’ classical
result states that m ≤

(a+b
a

)
if |Ai | ≤ a and |Bi | ≤ b for each i .

Our central problem is to see how this bound changes with additional
conditions (proofs, applications and generalizations).

1-cross intersecting set pair system: |Ai ∩ Bj | = 1 for all i 6= j .
We show connections to perfect graphs, clique partitions of graphs,
and finite geometries. The max size of a 1-cross intersecting SPS is

at least 5n/2 for n even, a = b = n,

equal to
(
b n

2c+ 1
)(
d n

2e+ 1
)

if a = 2 and b = n ≥ 4,

at most | ∪m
i=1 Ai |,

asymptotically n2 if {Ai} is a linear hypergraph
(|Ai ∩ Aj | ≤ 1 for i 6= j). ,

Z. Füredi (newest results with A. Gyárfás and Z. Király) Rényi Institute of Mathematics, Budapest, Hungary z-furedi@illinois.eduA useful tool in combinatorics: Intersecting set-pair systems



Extended Abstract

A cross intersecting set pair system (SPS) of size m:
({Ai}m

i=1, {Bi}m
i=1) with Ai ∩ Bi = ∅ and Ai ∩ Bj 6= ∅.

It is an important tool of extremal combinatorics. Bollobás’ classical
result states that m ≤

(a+b
a

)
if |Ai | ≤ a and |Bi | ≤ b for each i .

Our central problem is to see how this bound changes with additional
conditions (proofs, applications and generalizations).
1-cross intersecting set pair system: |Ai ∩ Bj | = 1 for all i 6= j .
We show connections to perfect graphs, clique partitions of graphs,
and finite geometries.

The max size of a 1-cross intersecting SPS is

at least 5n/2 for n even, a = b = n,

equal to
(
b n

2c+ 1
)(
d n

2e+ 1
)

if a = 2 and b = n ≥ 4,

at most | ∪m
i=1 Ai |,

asymptotically n2 if {Ai} is a linear hypergraph
(|Ai ∩ Aj | ≤ 1 for i 6= j). ,
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Some standard notation

[n] := {1,2, . . . ,n}(S
k

)
:= set of k -sets, 2S power set

degG(x) degree of vertex x of graph G = (V ,E)

NG(x) ⊂ V , neighborhood

T ⊆ V (H) is a cover (transversal) of the hypergraph H = (V , E)
if T ∩ e 6= ∅ ∀e ∈ E .

τ(H) := min |T |. (covering number/transversal number).

M⊆ E is a matching (parallel edges) if e ∩ e′ = ∅ ∀e 6= e′ ∈M.
ν(H) := min |M|. (matching number of H).

ν = 1⇐⇒ H is intersecting hpgr.
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Cross intersecting set pair systems
A cross intersecting set pair system (SPS) of size m:

({Ai}mi=1, {Bi}mi=1) with Ai ∩ Bi = ∅ and Ai ∩ Bj 6= ∅.

Theorem (Bollobás 1965)

(A1, ,B1), (A2,B2), . . . , (Am,Bm) set pairs with
|Ai | ≤ a, |Bi | ≤ b and
Ai ∩ Bi = ∅, and

Ai ∩ Bj 6= ∅ for all i 6= j , then m ≤
(

a + b
a

)
.

Best possible:
A :=

(X
a

)
, B :=

(X
b

)
,
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Proof of Bollobás’ theorem

Conj’d by Berge/ Ehrenfeucht, Mycielsky 1973. Proof by
Jaeger, Payan 1971, Tarjan 1975, Katona 1974, (Alon / Frankl).

Given (A,B), a cross intersecting SPS. X := ∪A ∪ B.

Figure: A type i permutation of X .
Call a permutation type i if Ai <π Bi .
Note that type i 6= type j .

Prob(π is of type i) = 1/
(|Ai |+Bi |
|Ai |

)
.

Therefore ∑
i

1(|Ai |+Bi |
|Ai |

) ≤ 1.
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The aim of this lecture
1. To show that cross intersecting SPS is an important tool,
by giving proofs, examples, generalizations, applications.

2.
To investigate 1-cross intersecting SPS. (|Ai ∩ Bj | = 1)
New results are joint with Gyárfás and Király, and
related to one of my favorite structures, finite affine and
projective planes

Figure: The Fano plane.
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The kernel of intersecting families
DEF: Suppose H is intersecting. S is a kernel of H if

S ∩ e ∩ f 6= ∅ ∀e, f ∈ H.

E.g., the kernel of {
(S

r

)
} (for |S| < 2r ) is itself,

the kernel of K1,m (star) is a singleton.

Theorem (Całczyńska-Karłowicz 1964)

∀r ∃CK (r) <∞ such that:
If H is intersecting, |e| ≤ r ∀e ∈ H, then ∃S, |S| ≤ CK (r).

CK (1) = 1, CK (2) = 3, CK (3) ≥ 7,
CK (q + 1) ≥ q2 + q + 1 if ∃ projective plane
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The kernel of intersecting families, proof
A proof by Katona’s permutation method by Erdős, Lovász 1973.

Given H, intersecting, |e| ≤ r ∀e ∈ H, let X := ∪H.
Remove element x if H|(X \ {x}) is still intersecting.
Repeat until we get a critical S:

∀x ∈ S ∃A(x),B(x) ∈ Hnew A(x) ∩ B(x) = {x}.

Figure: A type x permutation of X .

Call a permutation type x if A(x) ≤π B(x). Type x 6= Type y .
Prob(π is of type x) = . . . ,

∑
x∈S Prob ≤ 1, CK (r) ≤ r

2

(2r−1
r

)
.

New results, see: Kang, Ni, Shan 2017, Polcyn, Ruciński 2017,
Henning, Yeo 2014, Tuza 1994/1996 (surveys), . . .

Z. Füredi (newest results with A. Gyárfás and Z. Király) Rényi Institute of Mathematics, Budapest, Hungary z-furedi@illinois.eduA useful tool in combinatorics: Intersecting set-pair systems



The kernel of intersecting families, proof
A proof by Katona’s permutation method by Erdős, Lovász 1973.
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Z. Füredi (newest results with A. Gyárfás and Z. Király) Rényi Institute of Mathematics, Budapest, Hungary z-furedi@illinois.eduA useful tool in combinatorics: Intersecting set-pair systems



The kernel of intersecting families, proof
A proof by Katona’s permutation method by Erdős, Lovász 1973.
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Z. Füredi (newest results with A. Gyárfás and Z. Király) Rényi Institute of Mathematics, Budapest, Hungary z-furedi@illinois.eduA useful tool in combinatorics: Intersecting set-pair systems



The kernel of intersecting families, proof
A proof by Katona’s permutation method by Erdős, Lovász 1973.
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Henning, Yeo 2014, Tuza 1994/1996 (surveys), . . .
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The kernel could be exponential
A construction by Erdős, Lovász 1973.

Take |V | = 2r − 2, |Z | = 1
2

(2r−2
r−1

)
, V ∩ Z = ∅.

∀ partition Π of V , |A| = |B| = r − 1 assign z := z(Π) ∈ Z .

Let {A(z),B(z)} := {A ∪ {z},B ∪ {z}}.
Then H is intersecting, critical, V (H) can not be shrunk

CK (r) ≥ (2r − 2) +
1
2

(
2r − 2
r − 1

)
New results, generalizations, see: Alon, Füredi 1987, Talbot 2004,
Tuza 1994/1996 (surveys), . . .
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Sperner families, LYM inequality
DEF: H ⊂ 2[n] is a Sperner family if A 6⊂ B ∀A,B ∈ H.

Theorem (Sperner)

|H| ≤
(

n
bn/2c

)
.

Theorem (LYM: Lubell, Yamamoto, Meshalkin)∑
A∈H

1( n
|A|
) ≤ 1.

Proof: (A,X \ A) is an cross intersetcing SPS.
Equality iff |A| = r ∀A ∈ H.

Z. Füredi (newest results with A. Gyárfás and Z. Király) Rényi Institute of Mathematics, Budapest, Hungary z-furedi@illinois.eduA useful tool in combinatorics: Intersecting set-pair systems



Sperner families, LYM inequality
DEF: H ⊂ 2[n] is a Sperner family if A 6⊂ B ∀A,B ∈ H.

Theorem (Sperner)

|H| ≤
(

n
bn/2c

)
.

Theorem (LYM: Lubell, Yamamoto, Meshalkin)∑
A∈H

1( n
|A|
) ≤ 1.

Proof: (A,X \ A) is an cross intersetcing SPS.
Equality iff |A| = r ∀A ∈ H.
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Cross intersecting k -tuples
DEF: (Ai ,Bi , . . . ,Zi)1≤i≤m form a family of cross intersecting
k -tuples if these k sets are pairwise disjoint and

∀i 6= j ∃X 6= Y ∈ {A,B, . . . ,Z} such that Xi ∩ Yj 6= ∅.

Theorem (Tuza)
If p1 + · · ·+ pk = 1, ∀pj > 0, then∑

i

p|Ai |
1 · · · p|Zi |

k ≤ 1

Corollary (Take p1 = p2 = 1/2.)

{Ai ,Bi}1≤i≤m cross intersecting SPS then m ≤ 2max{|Ai |+|Bi |}.

Even more, it is enough to suppose that for all i 6= j
max{|Ai ∩ Bj |, |Aj ∩ Bi |} > 0.

Other results on k -tuples: Alon 1985.
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A geometric application, tangent simplices
DEF: S,S′ ⊂ Rd are tangent simplices if

int S ∩ int S′ = ∅ and dim(S ∩ S′) = d − 1.

Theorem (Perles)

Suppose S1, . . . ,Sm ⊂ Rd pairwise tangent.
Then m ≤ 2d+1.

Four tangent triangles
J. Zaks: h(2) = 4, h(3) = 8, h(d) ≥ 2d .
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Tangent simplices, a proof using SPS

Perles’ proof.
Suppose S1, . . . ,Sm ⊂ Rd pairwise tangent.
Let H1, . . . ,Hv all hyperplanes, tangent to some faces
(v ≤ m(d + 1)).

Take a general point O and given Si
Ai := tangent hyperplanes Hα such that O ∈ H+

α and Si ⊂ H+
α .

Then {|Ai ∩ Bj |, |Aj ∩ Bi |} = {0,1}.
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Pairs of disjoint subspaces

DEF: A,B ⊂ Rd are disjoint linear subspaces if
A ∩ B = {0}, i.e., dim(A + B) = dim(A) + dim(B).

Non-disjoint: dim(A ∩ B) ≥ 1.

Theorem (Lovász)

Suppose that (Ai ,Bi)1≤i≤m is a cross intersecting family of
disjoint pairs of subspaces of dimensions a and b, i.e.,

dim(Ai) ≤ a, dim(Bi) ≤ b and
dim(Ai ∩ Bi) = 0 and dim(Ai ∩ Bj) ≥ 1.

Then m ≤
(

a + b
a

)
.

Implies Bollobás.
Given a cross intersecting SPS (A,B): take d = | ∪ A ∪ B| pairwise
orthogonal vectors {et : t ∈ [d ]} and let Âi := Span ({et : t ∈ Ai}).
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A consequence of Lovász geometric method

Theorem (ZF cross t-intersecting families)

(A1, ,B1),. . . ,(Am,Bm) set pairs with |Ai | ≤ a, |Bi | ≤ b and
Ai ∩ Bi ≤ t , and Ai ∩ Bj > t for all i 6= j .

Then m ≤
(

a + b − 2t
a− t

)
.

Best possible:
V = X ∪ T , |X | = a + b − 2t , |T | = t and
A := {A ∈

(V
a

)
,T ⊂ A}, B := {B ∈

(V
b

)
,T ⊂ B},
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Another consequence, skew cross intersecting
SPS’s

Theorem (Frankl/ Kalai)

(A1, ,B1),. . . ,(Am,Bm) set pairs with |Ai | ≤ a, |Bi | ≤ b and

Ai ∩ Bi = ∅, and Ai ∩ Bj 6= ∅ for all i < j .

Then m ≤
(

a + b
a

)
.

Best possible, but many more extremal families.

True for cross t-intersecting, also for the subspace version.
But no optimal LYM type inequality is known.

Alon and Kalai: used skew cross intersecting SPS’s
to prove the Upper Bound Theorem of McMullen:
An exact formula for the max number of t dim faces of an
n-vertex convex polytope with n vertices.
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to prove the Upper Bound Theorem of McMullen:
An exact formula for the max number of t dim faces of an
n-vertex convex polytope with n vertices.
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Another consequence, skew cross intersecting
SPS’s

Theorem (Frankl/ Kalai)

(A1, ,B1),. . . ,(Am,Bm) set pairs with |Ai | ≤ a, |Bi | ≤ b and

Ai ∩ Bi = ∅, and Ai ∩ Bj 6= ∅ for all i < j .

Then m ≤
(

a + b
a

)
.

Best possible, but many more extremal families.

True for cross t-intersecting, also for the subspace version.
But no optimal LYM type inequality is known.

Alon and Kalai: used skew cross intersecting SPS’s
to prove the Upper Bound Theorem of McMullen:
An exact formula for the max number of t dim faces of an
n-vertex convex polytope with n vertices.
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τ -critical graphs
DEF: (Gallai) The graph G is τ -critical if

τ(G \ e) < τ(G) ∀e ∈ E(G)

E.g., C2τ−1, Kτ+1.

Theorem (Erdős, Gallai)

G is τ -critical, then |V (G)| ≤ 2τ .

Theorem (Erdős, Hajnal, Moon)

G is τ -critical, then e(G) ≤
(
τ + 1

2

)
.

Best possible. (Originally they stated it about G).

Proof of the EHM thm:
Consider A(e) := e for edge e ∈ E(G), and
B(e) := a covering set of the edges of E(G) \ {e}.
They form a cross intersecting SPS of set sizes 2 and τ − 1.

Z. Füredi (newest results with A. Gyárfás and Z. Király) Rényi Institute of Mathematics, Budapest, Hungary z-furedi@illinois.eduA useful tool in combinatorics: Intersecting set-pair systems



τ -critical graphs
DEF: (Gallai) The graph G is τ -critical if

τ(G \ e) < τ(G) ∀e ∈ E(G)

E.g., C2τ−1, Kτ+1.

Theorem (Erdős, Gallai)
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τ -critical hypergraphs

τ(H \ e) < τ(H) ∀e ∈ E(H)

E.g., Erdős-Lovász construction for CK (r), K τ+r−1
r .

Theorem (Bollobás 1965)

H is τ -critical, r -uniform, then |E(H)| ≤
(
τ + r − 1

r

)
.

What about f (τ, r) := max |V (H)|, H is τ -critical, r -uniform.

Theorem (Petruska, Szemerédi r = 3, Gyárfás, Lehel, Tuza
1982, finally Tuza)

H is τ -critical, then |V (H)| ≤
(
τ+r−1

r−1

)
+
(
τ+r−2

r−2

)
.

Best upper bound is still unknown.

Z. Füredi (newest results with A. Gyárfás and Z. Király) Rényi Institute of Mathematics, Budapest, Hungary z-furedi@illinois.eduA useful tool in combinatorics: Intersecting set-pair systems



τ -critical hypergraphs

τ(H \ e) < τ(H) ∀e ∈ E(H)
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PART II. 1-cross intersecting families

DEF: A 1-cross intersecting set pair system (SPS) of size m:

({Ai}mi=1, {Bi}mi=1) with Ai ∩ Bi = ∅ and |Ai ∩ Bj | = 1 ∀i 6= j .

An SPS is (a,b)-bounded if |Ai | ≤ a and |Bi | ≤ b for each i .

A C5 and C5 form a (2,2)-bounded 1-cross int’ SPS.
It is optimal: m2(∗, ∗,1) = 5

The edges of a C2n+1 and independent covers:
a (2,n)-bounded 1-cross intersecting SPS.
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The product
construction

Proposition

If (a1,b1)-bounded and (a2,b2)-bounded 1-cross intersecting
SPS exist with sizes m1 and m2, then (a1+a2,b1+b2)-bounded
1-cross intersecting SPS also exists of size m1 ·m2.

Proof Given (A1,B1) and (A2,B2) on vertex sets Vα.
Take m1 pairwise disjoint ground sets V 1

2 , . . . ,V
m1
2 with copies

(Ai
2,Bi

2), e.g., Ai
2 = {Ai,1, . . . ,Ai,m2} . . .

The pairs A′i,j = Ai ∪ Ai,j , B′i,j = Bi ∪ Bi,j form a 1-cross
intersecting SPS, |A′i,j | ≤ a1 + a2 and |B′i,j | ≤ b1 + b2.

Z. Füredi (newest results with A. Gyárfás and Z. Király) Rényi Institute of Mathematics, Budapest, Hungary z-furedi@illinois.eduA useful tool in combinatorics: Intersecting set-pair systems



The product
construction

Proposition

If (a1,b1)-bounded and (a2,b2)-bounded 1-cross intersecting
SPS exist with sizes m1 and m2, then (a1+a2,b1+b2)-bounded
1-cross intersecting SPS also exists of size m1 ·m2.

Proof Given (A1,B1) and (A2,B2) on vertex sets Vα.
Take m1 pairwise disjoint ground sets V 1

2 , . . . ,V
m1
2 with copies

(Ai
2,Bi

2), e.g., Ai
2 = {Ai,1, . . . ,Ai,m2} . . .

The pairs A′i,j = Ai ∪ Ai,j , B′i,j = Bi ∪ Bi,j form a 1-cross
intersecting SPS, |A′i,j | ≤ a1 + a2 and |B′i,j | ≤ b1 + b2.
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1-cross intersecting SPS can be exponential

Corollary

There exists an (n,n)-bounded 1-cross intersecting SPS of size
5n/2 if n is even and of size 2 · 5(n−1)/2 if n is odd.

The product construction gives a (3,3)-bounded 1-cross
intersecting SPS of size 10.
We have another example, the pairs
({i , i+1, i+2}, {i+3, i+6, i+9}) taken (mod 10) has 10 vertices.

Samuel Spiro (sspiro@ucsd.edu) informed us that his computer
program successfully checked that 10 is indeed the largest size,
m1(∗, ∗,1) = 2,
m2(∗, ∗,1) = 5,
m3(∗, ∗,1) = 10,
m4(∗, ∗,1) ≥ 25.
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Limit exists

Fekete’s Lemma on subadditive sequences implies
√

5 ≤ lim
n→∞

(mn(∗, ∗,1))1/n = ∃ ≤ 4.

A challenging problem is to decrease essentially Bollobás’
upper bound:

Conjecture

There exists a positive ε such that mn(∗, ∗,1) ≤ (1− ε)
(2n

n

)
for

every n ≥ 2.
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A Fischer’s inequality for cross 1-intersecring SPS

Proposition ( m ≤ | ∪ A|)
Let (A,B) be 1-cross intersecting, V := ∪A. The char. vectors
of the edges of A are linearly independent in RV .

Let ai (resp. bi ) denote the characteristic vector of Ai (resp. Bi ),
ai(v) = 1 for v ∈ V if and only if v ∈ Ai . Otherwise ai(v) = 0.
Suppose

m∑
i=1

λiai = 0.

Take the dot product with bj . Since |Ai ∩ Bj | = 1 for i 6= j and
|Aj ∩ Bj | = 0, we get (

m∑
i=1

λi

)
− λj = 0.

Add up for all j : (m − 1)
∑m

i=1 λi = 0, consequently
∑m

i=1 λi = 0
and thus λj = 0 for all j .
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Lovász’ characterization of perfect graphs

A special case of the previous Proposition can be used in the
non-trivial part of Gasparyan’s 1996 proof of Lovász’s theorem:

A graph G is perfect if and only if

|V (H)| ≤ α(H)ω(H) (1)

holds for all induced subgraphs H of G.

Proof. In a minimal imperfect graph G there is a 1-cross
intersecting SPS of size m = α(G)ω(G) + 1 defined by
independent sets and complete subgraphs. By the previous
Proposition, |V (G)| ≥ α(G)ω(G) + 1, contradicting (1).

Corollary (Lovász)
A graph is perfect if and only if its complement is perfect.
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(2,n)-bounded 1-cross intersecting SPS

Theorem (The case of A is a graph.)

Let n ≥ 4, and let (A,B) be a (2,n)-bounded 1-cross
intersecting SPS of size m. Then

m ≤
(⌊n

2

⌋
+ 1
)(⌈n

2

⌉
+ 1
)
.

Best possible. For n = 2,3 the exact values are m = 5,7.

An extremal family:
⌊ n

2

⌋
+ 1 copies of stars with

⌈ n
2

⌉
+ 1 edges.

Z. Füredi (newest results with A. Gyárfás and Z. Király) Rényi Institute of Mathematics, Budapest, Hungary z-furedi@illinois.eduA useful tool in combinatorics: Intersecting set-pair systems



Linear hypergraphs and cross 1-intersecting SPS
A hypergraph H is called linear if the intersection of any two
different edges has at most one vertex.
E.g., affine planes AG(2,q). Usually V (AG(2,q)) = F2

q,
q2 vertices and the hyperedges = q2 + q lines.

H is called 1-intersecting if |H ∩ H ′| = 1 for all H,H ′ ∈ H
whenever H 6= H ′.
E.g., finite projective planes PG(2,q).

If one of (A,B), say A, in an SPS is linear, then
(without any assumption on |Bi ∩ Bj |, |Ai ∩ Bj |).

Proposition (26)

The size of an (n,n)-bounded cross intersecting SPS (A,B) with
linear A is at most n2 + n + 1.
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Double stars

The vertex set of a double star of size s consist of
{vi,j | 1 ≤ i , j ≤ s, i 6= j} and two additional vertices wa and wb.
Define for i ∈ [s] Ai := {wa} ∪ {vi,j | 1 ≤ j ≤ s, j 6= i} and

Bi := {wb} ∪ {vj,i | 1 ≤ j ≤ s, j 6= i}.

(A,B) is a 1-cross intersecting SPS of size s containing
s-element sets such that both A and B are 1-intersecting.
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Notation and general setting
Let a,b > 0 and IA, IB, Icross three sets of non-negative integers.
Let m(a,b, IA, IB, Icross) the maximum size m of a cross
intersecting SPS (A,B) with the following conditions.

i) Ai ∩ Bi = ∅ for every 1 ≤ i ≤ m,
ii-iii) |Ai | ≤ a, |Bi | ≤ b for every 1 ≤ i ≤ m,
iv-v) |Ai ∩ Aj | ∈ IA, |Bi ∩ Bj | ∈ IB for every 1 ≤ i 6= j ≤ m,

vi) 0 < |Ai ∩ Bj | ∈ Icross for every 1 ≤ i 6= j ≤ m.

We suppose that 0 6∈ Icross, and m ≥ 2.
If a constraint in iv)–vi) is vacuous (i.e., {0,1, . . . , |X |} ⊆ IX or
{1, . . . ,min{a,b}} ⊆ Icross) then we use the symbol ∗
Bollobás’ theorem:

m(a,b, ∗, ∗, ∗) =

(
a + b

a

)
,

Z. Füredi (newest results with A. Gyárfás and Z. Király) Rényi Institute of Mathematics, Budapest, Hungary z-furedi@illinois.eduA useful tool in combinatorics: Intersecting set-pair systems



Notation and general setting
Let a,b > 0 and IA, IB, Icross three sets of non-negative integers.
Let m(a,b, IA, IB, Icross) the maximum size m of a cross
intersecting SPS (A,B) with the following conditions.

i) Ai ∩ Bi = ∅ for every 1 ≤ i ≤ m,
ii-iii) |Ai | ≤ a, |Bi | ≤ b for every 1 ≤ i ≤ m,
iv-v) |Ai ∩ Aj | ∈ IA, |Bi ∩ Bj | ∈ IB for every 1 ≤ i 6= j ≤ m,

vi) 0 < |Ai ∩ Bj | ∈ Icross for every 1 ≤ i 6= j ≤ m.
We suppose that 0 6∈ Icross, and m ≥ 2.
If a constraint in iv)–vi) is vacuous (i.e., {0,1, . . . , |X |} ⊆ IX or
{1, . . . ,min{a,b}} ⊆ Icross) then we use the symbol ∗

Bollobás’ theorem:

m(a,b, ∗, ∗, ∗) =

(
a + b

a

)
,
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More notations
Our Theorem on p.25 states (for n ≥ 4)

m(2,n, ∗, ∗,1) =
(⌊n

2

⌋
+ 1
)(⌈n

2

⌉
+ 1
)
.

For the case a = b = n and use the abbreviation

mn(IA, IB, Icross) := m(n,n, IA, IB, Icross).

IA = {0,1}: (A is a linear hypergraph), we write ‘01-int’
IA = {1}: (A is a 1-intersecting hypergraph), we write ‘1-int’
for Icross = {1} we use just ‘1’.
E.g., Proposition p. 26:

mn(01-int, ∗, ∗) ≤ n2 + n + 1.
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The origin of the new problems,
The thickness of a clique partitions

Given a graph G, a clique (Biclique) partition of E(G)
= parts are complete (complete bipartite) graphs.

The thickness of a partition is the maximum s such that every
vertex x ∈ V (G) appears in at most s cliques (bicliques).

AIM: minimize thickness. ‘Most difficult’ cases:
T2m (cocktail party graph) = K2m\ a perfect matching.
B2m is obtained from Km,m by removing a perfect matching.

Theorem (just taking dual hypergraphs)
The max m that T2m has a clique partition of thickness n = the
maximum size of an (n,n)-bounded 1-cross intersecting SPS in
which (A,B) are also 1-intersecting. = mn(1-int,1-int,1)

The maximum m such that B2m has a biclique partition of
thickness n is mn(∗, ∗,1).
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The case of both A and B are linear hypergraphs

Then the bound of Prop. (26) can be approximately halved.

Theorem (a bit complicated double counting)

Suppose that (A,B) is an (n,n)-bounded 1-cross intersecting
SPS of size m such that both A and B are linear hypergraphs.
Then m ≤ 1

2n2 + n + 1. I.e., mn(1-int,1-int,1) ≤ 1
2n2 + n + 1.

Bellow we give three constructive lower bounds, large cross
intersecting SPS such that A is an intersecting linear
hypergraph, showing that our results asymptotically the best
possible, i.e.,
mn(1-int, ∗,1) and mn(1-int,1-int, ∗) = n2 − o(n2) ,

and mn(1-int,1-int,1) = 1
2n2 − o(n2).

(We only give details of the boxed statement.)
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First step

We prove the lower bound for mn in three steps.
(For each of the three statements) like Drake/Blokhuis/others

The function mn(IA, IB, Icross) is monotone increasing in n,
we need only for a dense set of special values of n.

First, considering the double star we have mn ≥ n
(for all three functions and for all n).

From now on, we only give details for the case (1-int,1-int, ∗).
We need (A,B) such that |Ai | = n, |Bi | = n for every i ∈ m,
both A and B are 1-intersecting of sizes mn = n2 − o(n2).
Both A and B are almost projective planes!, and
Ai ∩ Bi = ∅ ∀i ∈ [m], and
Ai ∩ Bj 6= ∅ for every 1 ≤ i 6= j ≤ m.
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Second step:
The product of an affine plane and
the double star

AG(2,q) has
q + 1 directions
(parallel classes).
Each class has
q lines.
Let δ be a
direction.
L1,δ,. . . , Lq,δ the
lines of this class.
Take q + 1 copies of the double star of size q.

Let Ai,δ := Li,δ ∪ Aδi and Bi,δ := Li+1,δ ∪ Bδ
i .

We obtain m2q ≥ q2 + q. Call this construction H(2q).
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Cross intersecting almost projective planes
Third step.

Suppose p + 2q ≤ n < p + 4q, (p,q primes) where
p ≤ q2 + q and n −O(n5/8) < p < n − 2

√
n.

We use the same kind of extension again to extend the
affine plane AG(2,p) with (p+1) copies of H(2q),
the 2q-uniform construction from Step 2.
The size of H(2q) is q2 + q ≥ p thus we need only the first p
set pairs from it.
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The End

THANKS FOR YOUR ATTENTION!
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